Cargando…

Neuron-specific Mafb knockout causes growth retardation accompanied by an impaired growth hormone/insulin-like growth factor I axis

Mammalian postnatal growth is regulated primarily by the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. MafB is a basic leucine zipper (bZip) transcription factor that has pleiotropic functions. Although MafB plays a critical role in fetal brain development, such as in guidance for h...

Descripción completa

Detalles Bibliográficos
Autores principales: Maimaiti, Shayida, Koshida, Ryusuke, Ojima, Masami, Kulathunga, Kaushalya, Oishi, Hisashi, Takahashi, Satoru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Association for Laboratory Animal Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842794/
https://www.ncbi.nlm.nih.gov/pubmed/31092767
http://dx.doi.org/10.1538/expanim.18-0182
Descripción
Sumario:Mammalian postnatal growth is regulated primarily by the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. MafB is a basic leucine zipper (bZip) transcription factor that has pleiotropic functions. Although MafB plays a critical role in fetal brain development, such as in guidance for hindbrain segmentation, its postnatal role in neurons remains to be elucidated. To investigate this, we used neuron-specific Mafb conditional knockout (cKO) mice. In addition to an approximately 50% neonatal viability, the Mafb cKO mice exhibited growth retardation without apparent signs of low energy intake. Notably, serum IGF-I levels of these mice in the postnatal stage were lower than those of control mice. They seemed to have a neuroendocrine dysregulation, as shown by the upregulation of serum GH levels in the resting state and an inconsistent secretory response of GH upon administration of growth hormone-releasing hormone. These findings reveal that neuronal MafB plays an important role in postnatal development regulated by the GH/IGF-I axis.