Cargando…
Double Proton Transfer in the Dimer of Formic Acid: An Efficient Quantum Mechanical Scheme
Double proton transfer plays an important role in biology and chemistry, such as with DNA base pairs, proteins and molecular clusters, and direct information about these processes can be obtained from tunneling splittings. Carboxylic acid dimers are prototypes for multiple proton transfer, of which...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842929/ https://www.ncbi.nlm.nih.gov/pubmed/31750286 http://dx.doi.org/10.3389/fchem.2019.00676 |
_version_ | 1783468106064068608 |
---|---|
author | Liu, Hao Cao, Jianwei Bian, Wensheng |
author_facet | Liu, Hao Cao, Jianwei Bian, Wensheng |
author_sort | Liu, Hao |
collection | PubMed |
description | Double proton transfer plays an important role in biology and chemistry, such as with DNA base pairs, proteins and molecular clusters, and direct information about these processes can be obtained from tunneling splittings. Carboxylic acid dimers are prototypes for multiple proton transfer, of which the formic acid dimer is the simplest one. Here, we present efficient quantum dynamics calculations of ground-state and fundamental excitation tunneling splittings in the formic acid dimer and its deuterium isotopologues. These are achieved with a multidimensional scheme developed by us, in which the saddle-point normal coordinates are chosen, the basis functions are customized for the proton transfer process, and the preconditioned inexact spectral transform method is used to solve the resultant eigenvalue problem. Our computational results are in excellent agreement with the most recent experiments (Zhang et al., 2017; Li et al., 2019). |
format | Online Article Text |
id | pubmed-6842929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68429292019-11-20 Double Proton Transfer in the Dimer of Formic Acid: An Efficient Quantum Mechanical Scheme Liu, Hao Cao, Jianwei Bian, Wensheng Front Chem Chemistry Double proton transfer plays an important role in biology and chemistry, such as with DNA base pairs, proteins and molecular clusters, and direct information about these processes can be obtained from tunneling splittings. Carboxylic acid dimers are prototypes for multiple proton transfer, of which the formic acid dimer is the simplest one. Here, we present efficient quantum dynamics calculations of ground-state and fundamental excitation tunneling splittings in the formic acid dimer and its deuterium isotopologues. These are achieved with a multidimensional scheme developed by us, in which the saddle-point normal coordinates are chosen, the basis functions are customized for the proton transfer process, and the preconditioned inexact spectral transform method is used to solve the resultant eigenvalue problem. Our computational results are in excellent agreement with the most recent experiments (Zhang et al., 2017; Li et al., 2019). Frontiers Media S.A. 2019-10-23 /pmc/articles/PMC6842929/ /pubmed/31750286 http://dx.doi.org/10.3389/fchem.2019.00676 Text en Copyright © 2019 Liu, Cao and Bian. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Liu, Hao Cao, Jianwei Bian, Wensheng Double Proton Transfer in the Dimer of Formic Acid: An Efficient Quantum Mechanical Scheme |
title | Double Proton Transfer in the Dimer of Formic Acid: An Efficient Quantum Mechanical Scheme |
title_full | Double Proton Transfer in the Dimer of Formic Acid: An Efficient Quantum Mechanical Scheme |
title_fullStr | Double Proton Transfer in the Dimer of Formic Acid: An Efficient Quantum Mechanical Scheme |
title_full_unstemmed | Double Proton Transfer in the Dimer of Formic Acid: An Efficient Quantum Mechanical Scheme |
title_short | Double Proton Transfer in the Dimer of Formic Acid: An Efficient Quantum Mechanical Scheme |
title_sort | double proton transfer in the dimer of formic acid: an efficient quantum mechanical scheme |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842929/ https://www.ncbi.nlm.nih.gov/pubmed/31750286 http://dx.doi.org/10.3389/fchem.2019.00676 |
work_keys_str_mv | AT liuhao doubleprotontransferinthedimerofformicacidanefficientquantummechanicalscheme AT caojianwei doubleprotontransferinthedimerofformicacidanefficientquantummechanicalscheme AT bianwensheng doubleprotontransferinthedimerofformicacidanefficientquantummechanicalscheme |