Cargando…
Recognizing Human Daily Activity Using Social Media Sensors and Deep Learning
The human daily activity category represents individual lifestyle and pattern, such as sports and shopping, which reflect personal habits, lifestyle, and preferences and are of great value for human health and many other application fields. Currently, compared to questionnaires, social media as a se...
Autores principales: | Gong, Junfang, Li, Runjia, Yao, Hong, Kang, Xiaojun, Li, Shengwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843133/ https://www.ncbi.nlm.nih.gov/pubmed/31627356 http://dx.doi.org/10.3390/ijerph16203955 |
Ejemplares similares
-
Emotion recognition of social media users based on deep learning
por: Li, Chen, et al.
Publicado: (2023) -
A Hybrid Deep Learning Model for Recognizing Actions of Distracted Drivers
por: Jiao, Shuang-Jian, et al.
Publicado: (2021) -
Deep-HAR: an ensemble deep learning model for recognizing the simple, complex, and heterogeneous human activities
por: Kumar, Prabhat, et al.
Publicado: (2023) -
Validating daily social media macroscopes of emotions
por: Pellert, Max, et al.
Publicado: (2022) -
Age Differences in the Relationship Between Daily Social Media Usage and Affect
por: Lin, Xin Yao, et al.
Publicado: (2020)