Cargando…
Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production
Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843219/ https://www.ncbi.nlm.nih.gov/pubmed/31554228 http://dx.doi.org/10.3390/microorganisms7100387 |
_version_ | 1783468163356164096 |
---|---|
author | Salamone, Monica Nicosia, Aldo Ghersi, Giulio Tagliavia, Marcello |
author_facet | Salamone, Monica Nicosia, Aldo Ghersi, Giulio Tagliavia, Marcello |
author_sort | Salamone, Monica |
collection | PubMed |
description | Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications. |
format | Online Article Text |
id | pubmed-6843219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68432192019-11-25 Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production Salamone, Monica Nicosia, Aldo Ghersi, Giulio Tagliavia, Marcello Microorganisms Article Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications. MDPI 2019-09-24 /pmc/articles/PMC6843219/ /pubmed/31554228 http://dx.doi.org/10.3390/microorganisms7100387 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Salamone, Monica Nicosia, Aldo Ghersi, Giulio Tagliavia, Marcello Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production |
title | Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production |
title_full | Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production |
title_fullStr | Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production |
title_full_unstemmed | Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production |
title_short | Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production |
title_sort | vibrio proteases for biomedical applications: modulating the proteolytic secretome of v. alginolyticus and v. parahaemolyticus for improved enzymes production |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843219/ https://www.ncbi.nlm.nih.gov/pubmed/31554228 http://dx.doi.org/10.3390/microorganisms7100387 |
work_keys_str_mv | AT salamonemonica vibrioproteasesforbiomedicalapplicationsmodulatingtheproteolyticsecretomeofvalginolyticusandvparahaemolyticusforimprovedenzymesproduction AT nicosiaaldo vibrioproteasesforbiomedicalapplicationsmodulatingtheproteolyticsecretomeofvalginolyticusandvparahaemolyticusforimprovedenzymesproduction AT ghersigiulio vibrioproteasesforbiomedicalapplicationsmodulatingtheproteolyticsecretomeofvalginolyticusandvparahaemolyticusforimprovedenzymesproduction AT tagliaviamarcello vibrioproteasesforbiomedicalapplicationsmodulatingtheproteolyticsecretomeofvalginolyticusandvparahaemolyticusforimprovedenzymesproduction |