Cargando…

The Effects of Different Space Forms in Residential Areas on Outdoor Thermal Comfort in Severe Cold Regions of China

In the context of global climate change and accelerated urbanization, the deterioration of the urban living environment has had a serious negative impact on the life of residents. However, studies on the effects of forms and configurations of outdoor spaces in residential areas on the outdoor therma...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zheming, Jin, Yumeng, Jin, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843333/
https://www.ncbi.nlm.nih.gov/pubmed/31627399
http://dx.doi.org/10.3390/ijerph16203960
Descripción
Sumario:In the context of global climate change and accelerated urbanization, the deterioration of the urban living environment has had a serious negative impact on the life of residents. However, studies on the effects of forms and configurations of outdoor spaces in residential areas on the outdoor thermal environment based on the particularity of climate in severe cold regions are very limited. Through field measurements of the thermal environment at the pedestrian level in the outdoor space of residential areas in three seasons (summer, the transition season and winter) in Harbin, China, this study explored the effects of forms and configurations of three typical outdoor spaces (the linear block, the enclosed block, and the square) on the thermal environment and thermal comfort using the Physiologically Equivalent Temperature (PET). The results show that the thermal environment of all outdoor space forms was relatively comfortable in the transition season but was uncomfortable in summer and winter. The full-enclosed block with a lower sky view factor (SVF) had a higher thermal comfort condition in summer and winter. The linear block with higher buildings and wider south–north spacing had a higher thermal comfort condition in summer and winter. When the buildings on the south side were lower and the south–north spacing was wider, the thermal environment of the square was more comfortable in winter.