Cargando…

Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants

Melatonin 2-hydroxylase (M2H) catalyzes the conversion of melatonin into 2-hydroxymelatonin (2OHM), which is present in plants at a higher concentration than melatonin. Although M2H has been cloned, the in vivo function of its product is unknown. Here, we generated stable T(2) homozygous transgenic...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Geun-Hee, Back, Kyoungwhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843340/
https://www.ncbi.nlm.nih.gov/pubmed/31597397
http://dx.doi.org/10.3390/biom9100589
_version_ 1783468192301056000
author Choi, Geun-Hee
Back, Kyoungwhan
author_facet Choi, Geun-Hee
Back, Kyoungwhan
author_sort Choi, Geun-Hee
collection PubMed
description Melatonin 2-hydroxylase (M2H) catalyzes the conversion of melatonin into 2-hydroxymelatonin (2OHM), which is present in plants at a higher concentration than melatonin. Although M2H has been cloned, the in vivo function of its product is unknown. Here, we generated stable T(2) homozygous transgenic rice plants in which expression of endogenous M2H was suppressed (RNAi lines). However, we failed to generate M2H overexpression transgenic rice due to failure of somatic embryogenesis. The M2H transcript level showed a diurnal rhythm with a peak at night concomitantly with the peak concentration of 2OHM. RNAi rice showed a reduced M2H mRNA level and 2OHM and melatonin concentrations. The unexpected decrease in the melatonin concentration was caused by redirection of melatonin into cyclic 3-hydroxymelatonin via a detour catabolic pathway. Thus, the decrease in the melatonin concentration in M2H RNAi rice led to slowed seedling growth and delayed germination. By contrast, the transient increase in the melatonin concentration was of greater magnitude in the M2H RNAi than the wild-type rice upon cadmium treatment due to possible suppression of melatonin degradation. Due to its higher concentration of melatonin, the M2H RNAi rice displayed tolerance to senescence, salt, and tunicamycin stresses. Therefore, the increase in the melatonin concentration caused by suppression of melatonin degradation or by overexpression of melatonin biosynthetic genes enhances stress tolerance in rice.
format Online
Article
Text
id pubmed-6843340
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68433402019-11-25 Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants Choi, Geun-Hee Back, Kyoungwhan Biomolecules Article Melatonin 2-hydroxylase (M2H) catalyzes the conversion of melatonin into 2-hydroxymelatonin (2OHM), which is present in plants at a higher concentration than melatonin. Although M2H has been cloned, the in vivo function of its product is unknown. Here, we generated stable T(2) homozygous transgenic rice plants in which expression of endogenous M2H was suppressed (RNAi lines). However, we failed to generate M2H overexpression transgenic rice due to failure of somatic embryogenesis. The M2H transcript level showed a diurnal rhythm with a peak at night concomitantly with the peak concentration of 2OHM. RNAi rice showed a reduced M2H mRNA level and 2OHM and melatonin concentrations. The unexpected decrease in the melatonin concentration was caused by redirection of melatonin into cyclic 3-hydroxymelatonin via a detour catabolic pathway. Thus, the decrease in the melatonin concentration in M2H RNAi rice led to slowed seedling growth and delayed germination. By contrast, the transient increase in the melatonin concentration was of greater magnitude in the M2H RNAi than the wild-type rice upon cadmium treatment due to possible suppression of melatonin degradation. Due to its higher concentration of melatonin, the M2H RNAi rice displayed tolerance to senescence, salt, and tunicamycin stresses. Therefore, the increase in the melatonin concentration caused by suppression of melatonin degradation or by overexpression of melatonin biosynthetic genes enhances stress tolerance in rice. MDPI 2019-10-08 /pmc/articles/PMC6843340/ /pubmed/31597397 http://dx.doi.org/10.3390/biom9100589 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Choi, Geun-Hee
Back, Kyoungwhan
Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants
title Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants
title_full Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants
title_fullStr Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants
title_full_unstemmed Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants
title_short Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants
title_sort suppression of melatonin 2-hydroxylase increases melatonin production leading to the enhanced abiotic stress tolerance against cadmium, senescence, salt, and tunicamycin in rice plants
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843340/
https://www.ncbi.nlm.nih.gov/pubmed/31597397
http://dx.doi.org/10.3390/biom9100589
work_keys_str_mv AT choigeunhee suppressionofmelatonin2hydroxylaseincreasesmelatoninproductionleadingtotheenhancedabioticstresstoleranceagainstcadmiumsenescencesaltandtunicamycininriceplants
AT backkyoungwhan suppressionofmelatonin2hydroxylaseincreasesmelatoninproductionleadingtotheenhancedabioticstresstoleranceagainstcadmiumsenescencesaltandtunicamycininriceplants