Cargando…

Enhanced Efficiencies of Perovskite Solar Cells by Incorporating Silver Nanowires into the Hole Transport Layer

In this study, we incorporated silver nanowires (AgNWs) into poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for inverted perovskite solar cells (PVSCs). The effect of AgNW incorporation on the perovskite crystallization, charge transfer, and powe...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Chien-Jui, Balamurugan, Rathinam, Liu, Bo-Tau
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843368/
https://www.ncbi.nlm.nih.gov/pubmed/31658629
http://dx.doi.org/10.3390/mi10100682
Descripción
Sumario:In this study, we incorporated silver nanowires (AgNWs) into poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for inverted perovskite solar cells (PVSCs). The effect of AgNW incorporation on the perovskite crystallization, charge transfer, and power conversion efficiency (PCE) of PVSCs were analyzed and discussed. Compared with neat PEDOT:PSS HTL, incorporation of few AgNWs into PEDOT:PSS can significantly enhance the PCE by 25%. However, the AgNW incorporation may result in performance overestimation due to the lateral charge transfer. The corrosion of AgNWs with a perovskite layer was discussed. Too much AgNW incorporation may lead to defects on the interface between the HTL and the perovskite layer. An extra PEDOT:PSS layer over the pristine PEDOT:PSS-AgNW layer can prevent AgNWs from corrosion by iodide ions.