Cargando…

Discrimination of Oviposition Deterrent Volatile β-Ionone by Odorant-Binding Proteins 1 and 4 in the Whitefly Bemisia tabaci

The whitefly, Bemisia tabaci, is an important invasive economic pest of agricultural crops worldwide. β-ionone has a significant oviposition repellent effect against B. tabaci, but the olfactory molecular mechanism of this insect for recognizing β-ionone is unclear. To clarify the binding properties...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Fengqi, Li, Du, Dewer, Youssef, Qu, Cheng, Yang, Zhen, Tian, Jiahui, Luo, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843521/
https://www.ncbi.nlm.nih.gov/pubmed/31623354
http://dx.doi.org/10.3390/biom9100563
Descripción
Sumario:The whitefly, Bemisia tabaci, is an important invasive economic pest of agricultural crops worldwide. β-ionone has a significant oviposition repellent effect against B. tabaci, but the olfactory molecular mechanism of this insect for recognizing β-ionone is unclear. To clarify the binding properties of odorant-binding proteins (OBPs) with β-ionone, we performed gene cloning, evolution analysis, bacterial expression, fluorescence competitive binding assay, and molecular docking to study the binding function of OBP1 and OBP4 on β-ionone. The results showed that after the OBP1 and OBP4 proteins were recombined, the compound β-ionone exhibited a reduction in the fluorescence binding affinity to <50%, with a dissociation constant of 5.15 and 3.62 μM for OBP1 and OBP4, respectively. Our data indicate that β-ionone has high affinity for OBP1 and OBP4, which play a crucial role in the identification of oviposition sites in B. tabaci. The findings of this study suggest that whiteflies employ β-ionone compound in the selection of the suitable egg-laying sites on host plants during the oviposition behavior.