Cargando…

Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function

Background. Parametric modeling of survival data is important, and reimbursement decisions may depend on the selected distribution. Accurate predictions require sufficiently flexible models to describe adequately the temporal evolution of the hazard function. A rich class of models is available amon...

Descripción completa

Detalles Bibliográficos
Autores principales: Kearns, Benjamin, Stevenson, Matt D., Triantafyllopoulos, Kostas, Manca, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843612/
https://www.ncbi.nlm.nih.gov/pubmed/31556792
http://dx.doi.org/10.1177/0272989X19873661
_version_ 1783468256863977472
author Kearns, Benjamin
Stevenson, Matt D.
Triantafyllopoulos, Kostas
Manca, Andrea
author_facet Kearns, Benjamin
Stevenson, Matt D.
Triantafyllopoulos, Kostas
Manca, Andrea
author_sort Kearns, Benjamin
collection PubMed
description Background. Parametric modeling of survival data is important, and reimbursement decisions may depend on the selected distribution. Accurate predictions require sufficiently flexible models to describe adequately the temporal evolution of the hazard function. A rich class of models is available among the framework of generalized linear models (GLMs) and its extensions, but these models are rarely applied to survival data. This article describes the theoretical properties of these more flexible models and compares their performance to standard survival models in a reproducible case study. Methods. We describe how survival data may be analyzed with GLMs and their extensions: fractional polynomials, spline models, generalized additive models, generalized linear mixed (frailty) models, and dynamic survival models. For each, we provide a comparison of the strengths and limitations of these approaches. For the case study, we compare within-sample fit, the plausibility of extrapolations, and extrapolation performance based on data splitting. Results. Viewing standard survival models as GLMs shows that many impose a restrictive assumption of linearity. For the case study, GLMs provided better within-sample fit and more plausible extrapolations. However, they did not improve extrapolation performance. We also provide guidance to aid in choosing between the different approaches based on GLMs and their extensions. Conclusions. The use of GLMs for parametric survival analysis can outperform standard parametric survival models, although the improvements were modest in our case study. This approach is currently seldom used. We provide guidance on both implementing these models and choosing between them. The reproducible case study will help to increase uptake of these models.
format Online
Article
Text
id pubmed-6843612
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-68436122019-12-11 Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function Kearns, Benjamin Stevenson, Matt D. Triantafyllopoulos, Kostas Manca, Andrea Med Decis Making Original Articles Background. Parametric modeling of survival data is important, and reimbursement decisions may depend on the selected distribution. Accurate predictions require sufficiently flexible models to describe adequately the temporal evolution of the hazard function. A rich class of models is available among the framework of generalized linear models (GLMs) and its extensions, but these models are rarely applied to survival data. This article describes the theoretical properties of these more flexible models and compares their performance to standard survival models in a reproducible case study. Methods. We describe how survival data may be analyzed with GLMs and their extensions: fractional polynomials, spline models, generalized additive models, generalized linear mixed (frailty) models, and dynamic survival models. For each, we provide a comparison of the strengths and limitations of these approaches. For the case study, we compare within-sample fit, the plausibility of extrapolations, and extrapolation performance based on data splitting. Results. Viewing standard survival models as GLMs shows that many impose a restrictive assumption of linearity. For the case study, GLMs provided better within-sample fit and more plausible extrapolations. However, they did not improve extrapolation performance. We also provide guidance to aid in choosing between the different approaches based on GLMs and their extensions. Conclusions. The use of GLMs for parametric survival analysis can outperform standard parametric survival models, although the improvements were modest in our case study. This approach is currently seldom used. We provide guidance on both implementing these models and choosing between them. The reproducible case study will help to increase uptake of these models. SAGE Publications 2019-09-26 2019-10 /pmc/articles/PMC6843612/ /pubmed/31556792 http://dx.doi.org/10.1177/0272989X19873661 Text en © The Author(s) 2019 http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Articles
Kearns, Benjamin
Stevenson, Matt D.
Triantafyllopoulos, Kostas
Manca, Andrea
Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function
title Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function
title_full Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function
title_fullStr Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function
title_full_unstemmed Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function
title_short Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function
title_sort generalized linear models for flexible parametric modeling of the hazard function
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843612/
https://www.ncbi.nlm.nih.gov/pubmed/31556792
http://dx.doi.org/10.1177/0272989X19873661
work_keys_str_mv AT kearnsbenjamin generalizedlinearmodelsforflexibleparametricmodelingofthehazardfunction
AT stevensonmattd generalizedlinearmodelsforflexibleparametricmodelingofthehazardfunction
AT triantafyllopouloskostas generalizedlinearmodelsforflexibleparametricmodelingofthehazardfunction
AT mancaandrea generalizedlinearmodelsforflexibleparametricmodelingofthehazardfunction