Cargando…

Reducing the Nano-Scale Aggregation of Perylene Diimide Based Acceptor by Conjugating a Bridge with a Large Volume

A novel perylene diimide (PDI) based acceptor P-PDI was synthesized by attaching a phenyl bridge to two octyloxy side chains. With two large volume side chains, the planarity of P-PDI was significantly reduced, leading to weak nano-aggregation of the PDI groups between the different acceptor molecul...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jun-Yi, Xia, Xu-Dong, Zhang, Jicheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843688/
https://www.ncbi.nlm.nih.gov/pubmed/31554238
http://dx.doi.org/10.3390/mi10100640
Descripción
Sumario:A novel perylene diimide (PDI) based acceptor P-PDI was synthesized by attaching a phenyl bridge to two octyloxy side chains. With two large volume side chains, the planarity of P-PDI was significantly reduced, leading to weak nano-aggregation of the PDI groups between the different acceptor molecules. Differential scanning calorimetry (DSC) experiments also revealed that P-PDI was amorphous, and demonstrating the aggregation of P-PDI was successfully suppressed. When blended with PTB7-Th to fabricate a polymer solar cell, a power conversation efficiency (PCE) of 2.21% was achieved, demonstrating that a conjugated bridge with a big volume side chain could significantly reduce the nano-scale aggregation of PDI based acceptor materials, which provides a new strategy to synthesize high efficiency acceptors based on PDI.