Cargando…

Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale

[Image: see text] We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatiotemporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal...

Descripción completa

Detalles Bibliográficos
Autores principales: Schnedermann, Christoph, Sung, Jooyoung, Pandya, Raj, Verma, Sachin Dev, Chen, Richard Y. S., Gauriot, Nicolas, Bretscher, Hope M., Kukura, Philipp, Rao, Akshay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844127/
https://www.ncbi.nlm.nih.gov/pubmed/31592672
http://dx.doi.org/10.1021/acs.jpclett.9b02437
_version_ 1783468375889936384
author Schnedermann, Christoph
Sung, Jooyoung
Pandya, Raj
Verma, Sachin Dev
Chen, Richard Y. S.
Gauriot, Nicolas
Bretscher, Hope M.
Kukura, Philipp
Rao, Akshay
author_facet Schnedermann, Christoph
Sung, Jooyoung
Pandya, Raj
Verma, Sachin Dev
Chen, Richard Y. S.
Gauriot, Nicolas
Bretscher, Hope M.
Kukura, Philipp
Rao, Akshay
author_sort Schnedermann, Christoph
collection PubMed
description [Image: see text] We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatiotemporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman microspectroscopy, which is used for in situ verification of the chemical identity in the 100–2000 cm(–1) spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy, allowing for the study of ultrafast transport properties down to the nanometer length scale.
format Online
Article
Text
id pubmed-6844127
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-68441272019-11-12 Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale Schnedermann, Christoph Sung, Jooyoung Pandya, Raj Verma, Sachin Dev Chen, Richard Y. S. Gauriot, Nicolas Bretscher, Hope M. Kukura, Philipp Rao, Akshay J Phys Chem Lett [Image: see text] We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatiotemporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman microspectroscopy, which is used for in situ verification of the chemical identity in the 100–2000 cm(–1) spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy, allowing for the study of ultrafast transport properties down to the nanometer length scale. American Chemical Society 2019-10-08 2019-11-07 /pmc/articles/PMC6844127/ /pubmed/31592672 http://dx.doi.org/10.1021/acs.jpclett.9b02437 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Schnedermann, Christoph
Sung, Jooyoung
Pandya, Raj
Verma, Sachin Dev
Chen, Richard Y. S.
Gauriot, Nicolas
Bretscher, Hope M.
Kukura, Philipp
Rao, Akshay
Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale
title Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale
title_full Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale
title_fullStr Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale
title_full_unstemmed Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale
title_short Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale
title_sort ultrafast tracking of exciton and charge carrier transport in optoelectronic materials on the nanometer scale
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844127/
https://www.ncbi.nlm.nih.gov/pubmed/31592672
http://dx.doi.org/10.1021/acs.jpclett.9b02437
work_keys_str_mv AT schnedermannchristoph ultrafasttrackingofexcitonandchargecarriertransportinoptoelectronicmaterialsonthenanometerscale
AT sungjooyoung ultrafasttrackingofexcitonandchargecarriertransportinoptoelectronicmaterialsonthenanometerscale
AT pandyaraj ultrafasttrackingofexcitonandchargecarriertransportinoptoelectronicmaterialsonthenanometerscale
AT vermasachindev ultrafasttrackingofexcitonandchargecarriertransportinoptoelectronicmaterialsonthenanometerscale
AT chenrichardys ultrafasttrackingofexcitonandchargecarriertransportinoptoelectronicmaterialsonthenanometerscale
AT gauriotnicolas ultrafasttrackingofexcitonandchargecarriertransportinoptoelectronicmaterialsonthenanometerscale
AT bretscherhopem ultrafasttrackingofexcitonandchargecarriertransportinoptoelectronicmaterialsonthenanometerscale
AT kukuraphilipp ultrafasttrackingofexcitonandchargecarriertransportinoptoelectronicmaterialsonthenanometerscale
AT raoakshay ultrafasttrackingofexcitonandchargecarriertransportinoptoelectronicmaterialsonthenanometerscale