Cargando…
WADDINGTON’S LANDSCAPE OF CELL AGING
Cellular aging is a complex process that involves many interwoven molecular processes. Studies in model organisms have identified many individual genes and factors that have profound effects on lifespan. However, how these genes and factors interact and function collectively to drive the aging proce...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844964/ http://dx.doi.org/10.1093/geroni/igz038.755 |
_version_ | 1783468552990228480 |
---|---|
author | Hao, Nan Li, Yang Jiang, Yanfei Paxman, Julie O’Laughlin, Richard Pillus, Lorraine Tsimring, Lev Hasty, Jeff |
author_facet | Hao, Nan Li, Yang Jiang, Yanfei Paxman, Julie O’Laughlin, Richard Pillus, Lorraine Tsimring, Lev Hasty, Jeff |
author_sort | Hao, Nan |
collection | PubMed |
description | Cellular aging is a complex process that involves many interwoven molecular processes. Studies in model organisms have identified many individual genes and factors that have profound effects on lifespan. However, how these genes and factors interact and function collectively to drive the aging process remains unclear. We investigated single-cell aging dynamics throughout the replicative lifespans of S. cerevisiae, and found that isogenic cells diverge towards two aging paths, with distinct phenotypic changes and death forms. We further identified specific molecular pathways driving each aging fate and revealed that these pathways interact and operate dynamically to enable an early-life switch that governs the aging fate decision and the progression towards death. Our work uncovers the interconnected molecular pathways that drives the aging process and opens up the possibility of designing interventions that simultaneously target multiple network nodes, instead of single genes, to more effectively extend the healthspan. |
format | Online Article Text |
id | pubmed-6844964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-68449642019-11-18 WADDINGTON’S LANDSCAPE OF CELL AGING Hao, Nan Li, Yang Jiang, Yanfei Paxman, Julie O’Laughlin, Richard Pillus, Lorraine Tsimring, Lev Hasty, Jeff Innov Aging Session 1115 (Symposium) Cellular aging is a complex process that involves many interwoven molecular processes. Studies in model organisms have identified many individual genes and factors that have profound effects on lifespan. However, how these genes and factors interact and function collectively to drive the aging process remains unclear. We investigated single-cell aging dynamics throughout the replicative lifespans of S. cerevisiae, and found that isogenic cells diverge towards two aging paths, with distinct phenotypic changes and death forms. We further identified specific molecular pathways driving each aging fate and revealed that these pathways interact and operate dynamically to enable an early-life switch that governs the aging fate decision and the progression towards death. Our work uncovers the interconnected molecular pathways that drives the aging process and opens up the possibility of designing interventions that simultaneously target multiple network nodes, instead of single genes, to more effectively extend the healthspan. Oxford University Press 2019-11-08 /pmc/articles/PMC6844964/ http://dx.doi.org/10.1093/geroni/igz038.755 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of The Gerontological Society of America. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Session 1115 (Symposium) Hao, Nan Li, Yang Jiang, Yanfei Paxman, Julie O’Laughlin, Richard Pillus, Lorraine Tsimring, Lev Hasty, Jeff WADDINGTON’S LANDSCAPE OF CELL AGING |
title | WADDINGTON’S LANDSCAPE OF CELL AGING |
title_full | WADDINGTON’S LANDSCAPE OF CELL AGING |
title_fullStr | WADDINGTON’S LANDSCAPE OF CELL AGING |
title_full_unstemmed | WADDINGTON’S LANDSCAPE OF CELL AGING |
title_short | WADDINGTON’S LANDSCAPE OF CELL AGING |
title_sort | waddington’s landscape of cell aging |
topic | Session 1115 (Symposium) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844964/ http://dx.doi.org/10.1093/geroni/igz038.755 |
work_keys_str_mv | AT haonan waddingtonslandscapeofcellaging AT liyang waddingtonslandscapeofcellaging AT jiangyanfei waddingtonslandscapeofcellaging AT paxmanjulie waddingtonslandscapeofcellaging AT olaughlinrichard waddingtonslandscapeofcellaging AT pilluslorraine waddingtonslandscapeofcellaging AT tsimringlev waddingtonslandscapeofcellaging AT hastyjeff waddingtonslandscapeofcellaging |