Cargando…
COMBINING MACHINE LEARNING WITH AUTOMATED NEMATODE LIFESPAN ANALYSIS TO IDENTIFY MODIFIERS OF ALZHEIMER’S DISEASE
Here we present new computational and experimental methods to leverage the gene expression and neuropathology data collected from several large-scale studies of Alzheimer’s disease . These data sets include diverse data types, including transcriptomics, neuropathology phenotypes such as quantificati...
Autores principales: | Russell, Joshua, Kaeberlein, Matt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6845388/ http://dx.doi.org/10.1093/geroni/igz038.361 |
Ejemplares similares
-
NEURONAL-SPECIFIC PROTEASOME AUGMENTATION VIA EXTENDS LIFESPAN AND REDUCES AGE-RELATED NEURODEGENERATION
por: Pickering, Andrew M
Publicado: (2019) -
NEW APPROACH TO STUDYING COLLECTIVE EFFECTS OF GENETIC FACTORS ON ALZHEIMER’S DISEASE
por: Yashin, Anatoliy, et al.
Publicado: (2019) -
MTOR-DRIVEN ALTERATIONS IN THE BRAIN MICROVASCULAR PROTEOME IN ALZHEIMER’S DISEASE
por: Banh, Andy, et al.
Publicado: (2019) -
TYPE I INTERFERON-MEDIATED NEUROINFLAMMATORY PROGRAM AND SYNAPSE LOSS IN ALZHEIMER’S DISEASE
por: Roy, Ethan, et al.
Publicado: (2019) -
IMPROVING BRAIN AGE PREDICTION MODELS: INCORPORATION OF AMYLOID STATUS IN ALZHEIMER’S DISEASE
por: Ly, Maria, et al.
Publicado: (2019)