Cargando…

METABOLIC FLEXIBILITY IN CLASSICAL MONOCYTES IS NOT AFFECTED BY AGE

Inflammaging is the chronic low-grade inflammation that occurs with age that contributes to the pathology of age-related diseases. Monocytes are innate immune cells that become dysregulated with age and which can contribute to inflammaging. Metabolism plays a key role in determining immune cell func...

Descripción completa

Detalles Bibliográficos
Autores principales: Yarbro, Johnathan, Pence, Brandt
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6845845/
http://dx.doi.org/10.1093/geroni/igz038.392
Descripción
Sumario:Inflammaging is the chronic low-grade inflammation that occurs with age that contributes to the pathology of age-related diseases. Monocytes are innate immune cells that become dysregulated with age and which can contribute to inflammaging. Metabolism plays a key role in determining immune cell functions, with anti-inflammatory cells primarily relying on fatty acid oxidation and pro-inflammatory cells primarily relying on glycolysis. It was recently shown that lipopolysaccharide (LPS)-stimulated monocytes can compensate for a lack of glucose by utilizing fatty acid oxidation. Given that mitochondrial function decreases with age, we hypothesized that monocytes taken from aged individuals would have an impaired ability to upregulate oxidative metabolism and would have impaired effector functions. Aging did not impair LPS-induced oxygen consumption rate during glucose starvation as measured on a Seahorse XFp system. Additionally, aged monocytes maintained inflammatory gene expression responses and phagocytic capacity during LPS stimulation in the absence of glucose. In conclusion, aged monocytes maintain effector and metabolic functions during glucose starvation, at least in an ex vivo context.