Cargando…
Multicenter Validation of the CamGFR Model for Estimated Glomerular Filtration Rate
Important oncological management decisions rely on kidney function assessed by serum creatinine–based estimated glomerular filtration rate (eGFR). However, no large-scale multicenter comparisons of methods to determine eGFR in patients with cancer are available. To compare the performance of formula...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6846361/ https://www.ncbi.nlm.nih.gov/pubmed/31750418 http://dx.doi.org/10.1093/jncics/pkz068 |
_version_ | 1783468866001698816 |
---|---|
author | Williams, Edward H Connell, Claire M Weaver, James M J Beh, Ian Potts, Harry Whitley, Cameron T Bird, Nicholas Al-Sayed, Tamer Monaghan, Phillip J Fehr, Martin Cathomas, Richard Bertelli, Gianfilippo Quinton, Amy Lewis, Paul Shamash, Jonathan Wilson, Peter Dooley, Michael Poole, Susan Mark, Patrick B Bookman, Michael A Earl, Helena Jodrell, Duncan Tavaré, Simon Lynch, Andy G Janowitz, Tobias |
author_facet | Williams, Edward H Connell, Claire M Weaver, James M J Beh, Ian Potts, Harry Whitley, Cameron T Bird, Nicholas Al-Sayed, Tamer Monaghan, Phillip J Fehr, Martin Cathomas, Richard Bertelli, Gianfilippo Quinton, Amy Lewis, Paul Shamash, Jonathan Wilson, Peter Dooley, Michael Poole, Susan Mark, Patrick B Bookman, Michael A Earl, Helena Jodrell, Duncan Tavaré, Simon Lynch, Andy G Janowitz, Tobias |
author_sort | Williams, Edward H |
collection | PubMed |
description | Important oncological management decisions rely on kidney function assessed by serum creatinine–based estimated glomerular filtration rate (eGFR). However, no large-scale multicenter comparisons of methods to determine eGFR in patients with cancer are available. To compare the performance of formulas for eGFR based on routine clinical parameters and serum creatinine not calibrated with isotope dilution mass spectrometry, we studied 3620 patients with cancer and 166 without cancer who had their glomerular filtration rate (GFR) measured with an exogenous nuclear tracer at one of seven clinical centers. The mean measured GFR was 86 mL/min. Accuracy of all models was center dependent, reflecting intercenter variability of isotope dilution mass spectrometry–creatinine measurements. CamGFR was the most accurate model for eGFR (root-mean-squared error 17.3 mL/min) followed by the Chronic Kidney Disease Epidemiology Collaboration model (root-mean-squared error 18.2 mL/min). |
format | Online Article Text |
id | pubmed-6846361 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-68463612019-11-18 Multicenter Validation of the CamGFR Model for Estimated Glomerular Filtration Rate Williams, Edward H Connell, Claire M Weaver, James M J Beh, Ian Potts, Harry Whitley, Cameron T Bird, Nicholas Al-Sayed, Tamer Monaghan, Phillip J Fehr, Martin Cathomas, Richard Bertelli, Gianfilippo Quinton, Amy Lewis, Paul Shamash, Jonathan Wilson, Peter Dooley, Michael Poole, Susan Mark, Patrick B Bookman, Michael A Earl, Helena Jodrell, Duncan Tavaré, Simon Lynch, Andy G Janowitz, Tobias JNCI Cancer Spectr Brief Communication Important oncological management decisions rely on kidney function assessed by serum creatinine–based estimated glomerular filtration rate (eGFR). However, no large-scale multicenter comparisons of methods to determine eGFR in patients with cancer are available. To compare the performance of formulas for eGFR based on routine clinical parameters and serum creatinine not calibrated with isotope dilution mass spectrometry, we studied 3620 patients with cancer and 166 without cancer who had their glomerular filtration rate (GFR) measured with an exogenous nuclear tracer at one of seven clinical centers. The mean measured GFR was 86 mL/min. Accuracy of all models was center dependent, reflecting intercenter variability of isotope dilution mass spectrometry–creatinine measurements. CamGFR was the most accurate model for eGFR (root-mean-squared error 17.3 mL/min) followed by the Chronic Kidney Disease Epidemiology Collaboration model (root-mean-squared error 18.2 mL/min). Oxford University Press 2019-09-19 /pmc/articles/PMC6846361/ /pubmed/31750418 http://dx.doi.org/10.1093/jncics/pkz068 Text en © The Author(s) 2019. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Brief Communication Williams, Edward H Connell, Claire M Weaver, James M J Beh, Ian Potts, Harry Whitley, Cameron T Bird, Nicholas Al-Sayed, Tamer Monaghan, Phillip J Fehr, Martin Cathomas, Richard Bertelli, Gianfilippo Quinton, Amy Lewis, Paul Shamash, Jonathan Wilson, Peter Dooley, Michael Poole, Susan Mark, Patrick B Bookman, Michael A Earl, Helena Jodrell, Duncan Tavaré, Simon Lynch, Andy G Janowitz, Tobias Multicenter Validation of the CamGFR Model for Estimated Glomerular Filtration Rate |
title | Multicenter Validation of the CamGFR Model for Estimated Glomerular Filtration Rate |
title_full | Multicenter Validation of the CamGFR Model for Estimated Glomerular Filtration Rate |
title_fullStr | Multicenter Validation of the CamGFR Model for Estimated Glomerular Filtration Rate |
title_full_unstemmed | Multicenter Validation of the CamGFR Model for Estimated Glomerular Filtration Rate |
title_short | Multicenter Validation of the CamGFR Model for Estimated Glomerular Filtration Rate |
title_sort | multicenter validation of the camgfr model for estimated glomerular filtration rate |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6846361/ https://www.ncbi.nlm.nih.gov/pubmed/31750418 http://dx.doi.org/10.1093/jncics/pkz068 |
work_keys_str_mv | AT williamsedwardh multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT connellclairem multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT weaverjamesmj multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT behian multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT pottsharry multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT whitleycameront multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT birdnicholas multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT alsayedtamer multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT monaghanphillipj multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT fehrmartin multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT cathomasrichard multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT bertelligianfilippo multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT quintonamy multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT lewispaul multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT shamashjonathan multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT wilsonpeter multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT dooleymichael multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT poolesusan multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT markpatrickb multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT bookmanmichaela multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT earlhelena multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT jodrellduncan multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT tavaresimon multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT lynchandyg multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate AT janowitztobias multicentervalidationofthecamgfrmodelforestimatedglomerularfiltrationrate |