Cargando…

A meta-analysis of neuroimaging studies on pain empathy: investigating the role of visual information and observers’ perspective

Empathy relies on brain systems that support the interaction between an observer’s mental state and cues about the others’ experience. Beyond the core brain areas typically activated in pain empathy studies (insular and anterior cingulate cortices), the diversity of paradigms used may reveal seconda...

Descripción completa

Detalles Bibliográficos
Autores principales: Jauniaux, Josiane, Khatibi, Ali, Rainville, Pierre, Jackson, Philip L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6847411/
https://www.ncbi.nlm.nih.gov/pubmed/31393982
http://dx.doi.org/10.1093/scan/nsz055
Descripción
Sumario:Empathy relies on brain systems that support the interaction between an observer’s mental state and cues about the others’ experience. Beyond the core brain areas typically activated in pain empathy studies (insular and anterior cingulate cortices), the diversity of paradigms used may reveal secondary networks that subserve other more specific processes. A coordinate-based meta-analysis of fMRI experiments on pain empathy was conducted to obtain activation likelihood estimates along three factors and seven conditions: visual cues (body parts, facial expressions), visuospatial (first-person, thirdperson), and cognitive (self-, stimuli-, other-oriented tasks) perspectives. The core network was found across cues and perspectives, and common activation was observed in higher-order visual areas. Body-parts distinctly activated areas related with sensorimotor processing (superior and inferior parietal lobules, anterior insula) while facial expression distinctly involved the inferior frontal gyrus. Self- compared to other-perspective produced distinct activations in the left insula while stimulus- versus other-perspective produced distinctive responses in the inferior frontal and parietal lobules, precentral gyrus, and cerebellum. Pain empathy relies on a core network which is modulated by several secondary networks. The involvement of the latter seems to depend on the visual cues available and the observer's mental state that can be influenced by specific instructions.