Cargando…

Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA

Chemical modification of transcripts with 5′ caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps—m(7)GpppN, m(7)GpppNm, GpppN, Gp...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jin, Alvin Chew, Bing Liang, Lai, Yong, Dong, Hongping, Xu, Luang, Balamkundu, Seetharamsingh, Cai, Weiling Maggie, Cui, Liang, Liu, Chuan Fa, Fu, Xin-Yuan, Lin, Zhenguo, Shi, Pei-Yong, Lu, Timothy K, Luo, Dahai, Jaffrey, Samie R, Dedon, Peter C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6847653/
https://www.ncbi.nlm.nih.gov/pubmed/31504804
http://dx.doi.org/10.1093/nar/gkz751
_version_ 1783468989354082304
author Wang, Jin
Alvin Chew, Bing Liang
Lai, Yong
Dong, Hongping
Xu, Luang
Balamkundu, Seetharamsingh
Cai, Weiling Maggie
Cui, Liang
Liu, Chuan Fa
Fu, Xin-Yuan
Lin, Zhenguo
Shi, Pei-Yong
Lu, Timothy K
Luo, Dahai
Jaffrey, Samie R
Dedon, Peter C
author_facet Wang, Jin
Alvin Chew, Bing Liang
Lai, Yong
Dong, Hongping
Xu, Luang
Balamkundu, Seetharamsingh
Cai, Weiling Maggie
Cui, Liang
Liu, Chuan Fa
Fu, Xin-Yuan
Lin, Zhenguo
Shi, Pei-Yong
Lu, Timothy K
Luo, Dahai
Jaffrey, Samie R
Dedon, Peter C
author_sort Wang, Jin
collection PubMed
description Chemical modification of transcripts with 5′ caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps—m(7)GpppN, m(7)GpppNm, GpppN, GpppNm, and m(2,2,7)GpppG—and 5 ‘metabolite’ caps—NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m(7)Gpppm(6)A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2′-O-methylation (m(7)Gpppm(6)A in mammals, m(7)GpppA in dengue virus). While substantial Dimroth-induced loss of m(1)A and m(1)Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m(1)A or m(1)Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps.
format Online
Article
Text
id pubmed-6847653
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-68476532019-11-18 Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA Wang, Jin Alvin Chew, Bing Liang Lai, Yong Dong, Hongping Xu, Luang Balamkundu, Seetharamsingh Cai, Weiling Maggie Cui, Liang Liu, Chuan Fa Fu, Xin-Yuan Lin, Zhenguo Shi, Pei-Yong Lu, Timothy K Luo, Dahai Jaffrey, Samie R Dedon, Peter C Nucleic Acids Res Methods Online Chemical modification of transcripts with 5′ caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps—m(7)GpppN, m(7)GpppNm, GpppN, GpppNm, and m(2,2,7)GpppG—and 5 ‘metabolite’ caps—NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m(7)Gpppm(6)A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2′-O-methylation (m(7)Gpppm(6)A in mammals, m(7)GpppA in dengue virus). While substantial Dimroth-induced loss of m(1)A and m(1)Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m(1)A or m(1)Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps. Oxford University Press 2019-11-18 2019-09-02 /pmc/articles/PMC6847653/ /pubmed/31504804 http://dx.doi.org/10.1093/nar/gkz751 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Methods Online
Wang, Jin
Alvin Chew, Bing Liang
Lai, Yong
Dong, Hongping
Xu, Luang
Balamkundu, Seetharamsingh
Cai, Weiling Maggie
Cui, Liang
Liu, Chuan Fa
Fu, Xin-Yuan
Lin, Zhenguo
Shi, Pei-Yong
Lu, Timothy K
Luo, Dahai
Jaffrey, Samie R
Dedon, Peter C
Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA
title Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA
title_full Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA
title_fullStr Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA
title_full_unstemmed Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA
title_short Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA
title_sort quantifying the rna cap epitranscriptome reveals novel caps in cellular and viral rna
topic Methods Online
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6847653/
https://www.ncbi.nlm.nih.gov/pubmed/31504804
http://dx.doi.org/10.1093/nar/gkz751
work_keys_str_mv AT wangjin quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT alvinchewbingliang quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT laiyong quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT donghongping quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT xuluang quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT balamkunduseetharamsingh quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT caiweilingmaggie quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT cuiliang quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT liuchuanfa quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT fuxinyuan quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT linzhenguo quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT shipeiyong quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT lutimothyk quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT luodahai quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT jaffreysamier quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna
AT dedonpeterc quantifyingthernacapepitranscriptomerevealsnovelcapsincellularandviralrna