Cargando…
Structure and function of the Toscana virus cap-snatching endonuclease
Toscana virus (TOSV) is an arthropod-borne human pathogen responsible for seasonal outbreaks of fever and meningoencephalitis in the Mediterranean basin. TOSV is a segmented negative-strand RNA virus (sNSV) that belongs to the genus phlebovirus (family Phenuiviridae, order Bunyavirales), encompassin...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6847833/ https://www.ncbi.nlm.nih.gov/pubmed/31584100 http://dx.doi.org/10.1093/nar/gkz838 |
_version_ | 1783468993168801792 |
---|---|
author | Jones, Rhian Lessoued, Sana Meier, Kristina Devignot, Stéphanie Barata-García, Sergio Mate, Maria Bragagnolo, Gabriel Weber, Friedemann Rosenthal, Maria Reguera, Juan |
author_facet | Jones, Rhian Lessoued, Sana Meier, Kristina Devignot, Stéphanie Barata-García, Sergio Mate, Maria Bragagnolo, Gabriel Weber, Friedemann Rosenthal, Maria Reguera, Juan |
author_sort | Jones, Rhian |
collection | PubMed |
description | Toscana virus (TOSV) is an arthropod-borne human pathogen responsible for seasonal outbreaks of fever and meningoencephalitis in the Mediterranean basin. TOSV is a segmented negative-strand RNA virus (sNSV) that belongs to the genus phlebovirus (family Phenuiviridae, order Bunyavirales), encompassing other important human pathogens such as Rift Valley fever virus (RVFV). Here, we carried out a structural and functional characterization of the TOSV cap-snatching endonuclease, an N terminal domain of the viral polymerase (L protein) that provides capped 3′OH primers for transcription. We report TOSV endonuclease crystal structures in the apo form, in complex with a di-ketoacid inhibitor (DPBA) and in an intermediate state of inhibitor release, showing details on substrate binding and active site dynamics. The structure reveals substantial folding rearrangements absent in previously reported cap-snatching endonucleases. These include the relocation of the N terminus and the appearance of new structural motifs important for transcription and replication. The enzyme shows high activity rates comparable to other His+ cap-snatching endonucleases. Moreover, the activity is dependent on conserved residues involved in metal ion and substrate binding. Altogether, these results bring new light on the structure and function of cap-snatching endonucleases and pave the way for the development of specific and broad-spectrum antivirals. |
format | Online Article Text |
id | pubmed-6847833 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-68478332019-11-18 Structure and function of the Toscana virus cap-snatching endonuclease Jones, Rhian Lessoued, Sana Meier, Kristina Devignot, Stéphanie Barata-García, Sergio Mate, Maria Bragagnolo, Gabriel Weber, Friedemann Rosenthal, Maria Reguera, Juan Nucleic Acids Res Structural Biology Toscana virus (TOSV) is an arthropod-borne human pathogen responsible for seasonal outbreaks of fever and meningoencephalitis in the Mediterranean basin. TOSV is a segmented negative-strand RNA virus (sNSV) that belongs to the genus phlebovirus (family Phenuiviridae, order Bunyavirales), encompassing other important human pathogens such as Rift Valley fever virus (RVFV). Here, we carried out a structural and functional characterization of the TOSV cap-snatching endonuclease, an N terminal domain of the viral polymerase (L protein) that provides capped 3′OH primers for transcription. We report TOSV endonuclease crystal structures in the apo form, in complex with a di-ketoacid inhibitor (DPBA) and in an intermediate state of inhibitor release, showing details on substrate binding and active site dynamics. The structure reveals substantial folding rearrangements absent in previously reported cap-snatching endonucleases. These include the relocation of the N terminus and the appearance of new structural motifs important for transcription and replication. The enzyme shows high activity rates comparable to other His+ cap-snatching endonucleases. Moreover, the activity is dependent on conserved residues involved in metal ion and substrate binding. Altogether, these results bring new light on the structure and function of cap-snatching endonucleases and pave the way for the development of specific and broad-spectrum antivirals. Oxford University Press 2019-11-18 2019-10-04 /pmc/articles/PMC6847833/ /pubmed/31584100 http://dx.doi.org/10.1093/nar/gkz838 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Structural Biology Jones, Rhian Lessoued, Sana Meier, Kristina Devignot, Stéphanie Barata-García, Sergio Mate, Maria Bragagnolo, Gabriel Weber, Friedemann Rosenthal, Maria Reguera, Juan Structure and function of the Toscana virus cap-snatching endonuclease |
title | Structure and function of the Toscana virus cap-snatching endonuclease |
title_full | Structure and function of the Toscana virus cap-snatching endonuclease |
title_fullStr | Structure and function of the Toscana virus cap-snatching endonuclease |
title_full_unstemmed | Structure and function of the Toscana virus cap-snatching endonuclease |
title_short | Structure and function of the Toscana virus cap-snatching endonuclease |
title_sort | structure and function of the toscana virus cap-snatching endonuclease |
topic | Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6847833/ https://www.ncbi.nlm.nih.gov/pubmed/31584100 http://dx.doi.org/10.1093/nar/gkz838 |
work_keys_str_mv | AT jonesrhian structureandfunctionofthetoscanaviruscapsnatchingendonuclease AT lessouedsana structureandfunctionofthetoscanaviruscapsnatchingendonuclease AT meierkristina structureandfunctionofthetoscanaviruscapsnatchingendonuclease AT devignotstephanie structureandfunctionofthetoscanaviruscapsnatchingendonuclease AT baratagarciasergio structureandfunctionofthetoscanaviruscapsnatchingendonuclease AT matemaria structureandfunctionofthetoscanaviruscapsnatchingendonuclease AT bragagnologabriel structureandfunctionofthetoscanaviruscapsnatchingendonuclease AT weberfriedemann structureandfunctionofthetoscanaviruscapsnatchingendonuclease AT rosenthalmaria structureandfunctionofthetoscanaviruscapsnatchingendonuclease AT reguerajuan structureandfunctionofthetoscanaviruscapsnatchingendonuclease |