Cargando…

Mitochondrial Unfolded Protein Response to Microgravity Stress in Nematode Caenorhabditis elegans

Caenorhabditis elegans is useful for assessing biological effects of spaceflight and simulated microgravity. The molecular response of organisms to simulated microgravity is still largely unclear. Mitochondrial unfolded protein response (mt UPR) mediates a protective response against toxicity from e...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Peidang, Li, Dan, Li, Wenjie, Wang, Dayong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848112/
https://www.ncbi.nlm.nih.gov/pubmed/31712608
http://dx.doi.org/10.1038/s41598-019-53004-9
Descripción
Sumario:Caenorhabditis elegans is useful for assessing biological effects of spaceflight and simulated microgravity. The molecular response of organisms to simulated microgravity is still largely unclear. Mitochondrial unfolded protein response (mt UPR) mediates a protective response against toxicity from environmental exposure in nematodes. Using HSP-6 and HSP-60 as markers of mt UPR, we observed a significant activation of mt UPR in simulated microgravity exposed nematodes. The increase in HSP-6 and HSP-60 expression mediated a protective response against toxicity of simulated microgravity. In simulated microgravity treated nematodes, mitochondria-localized ATP-binding cassette protein HAF-1 and homeodomain-containing transcriptional factor DVE-1 regulated the mt UPR activation. In the intestine, a signaling cascade of HAF-1/DVE-1-HSP-6/60 was required for control of toxicity of simulated microgravity. Therefore, our data suggested the important role of mt UPR activation against the toxicity of simulated microgravity in organisms.