Cargando…
Predicting rehospitalization within 2 years of initial patient admission for a major depressive episode: a multimodal machine learning approach
Machine learning methods show promise to translate univariate biomarker findings into clinically useful multivariate decision support systems. At current, works in major depressive disorder have predominantly focused on neuroimaging and clinical predictor modalities, with genetic, blood-biomarker, a...
Autores principales: | Cearns, Micah, Opel, Nils, Clark, Scott, Kaehler, Claas, Thalamuthu, Anbupalam, Heindel, Walter, Winter, Theresa, Teismann, Henning, Minnerup, Heike, Dannlowski, Udo, Berger, Klaus, Baune, Bernhard T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848135/ https://www.ncbi.nlm.nih.gov/pubmed/31712550 http://dx.doi.org/10.1038/s41398-019-0615-2 |
Ejemplares similares
-
From multivariate methods to an AI ecosystem
por: Winter, Nils R., et al.
Publicado: (2021) -
Systematic misestimation of machine learning performance in neuroimaging studies of depression
por: Flint, Claas, et al.
Publicado: (2021) -
Recommendations and future directions for supervised machine learning in psychiatry
por: Cearns, Micah, et al.
Publicado: (2019) -
Predictors of Rehospitalization and Mortality in Diabetes-Related Hospital Admissions
por: Kozioł, Milena, et al.
Publicado: (2021) -
Establishing the bidirectional relationship between depression and subclinical arteriosclerosis – rationale, design, and characteristics of the BiDirect Study
por: Teismann, Henning, et al.
Publicado: (2014)