Cargando…
DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome
Despite great advances, molecular cancer pathology is often limited to the use of a small number of biomarkers rather than the whole transcriptome, partly due to computational challenges. Here, we introduce a novel architecture of Deep Neural Networks (DNNs) that is capable of simultaneous inference...
Autores principales: | Azarkhalili, Behrooz, Saberi, Ali, Chitsaz, Hamidreza, Sharifi-Zarchi, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848155/ https://www.ncbi.nlm.nih.gov/pubmed/31712594 http://dx.doi.org/10.1038/s41598-019-52937-5 |
Ejemplares similares
-
Cell Identity Codes: Understanding Cell Identity from Gene Expression Profiles using Deep Neural Networks
por: Abdolhosseini, Farzad, et al.
Publicado: (2019) -
PiDeeL: metabolic pathway-informed deep learning model for survival analysis and pathological classification of gliomas
por: Kaynar, Gun, et al.
Publicado: (2023) -
ARYANA: Aligning Reads by Yet Another Approach
por: Gholami, Milad, et al.
Publicado: (2014) -
DeeP4med: deep learning for P4 medicine to predict normal and cancer transcriptome in multiple human tissues
por: Mahdi-Esferizi, Roohallah, et al.
Publicado: (2023) -
Machine Learning and Network Analysis of Molecular Dynamics Trajectories Reveal Two Chains of Red/Ox-specific Residue Interactions in Human Protein Disulfide Isomerase
por: Karamzadeh, Razieh, et al.
Publicado: (2017)