Cargando…
Radiomics-Based Machine Learning Technology Enables Better Differentiation Between Glioblastoma and Anaplastic Oligodendroglioma
Purpose: The aim of this study was to test whether radiomics-based machine learning can enable the better differentiation between glioblastoma (GBM) and anaplastic oligodendroglioma (AO). Methods: This retrospective study involved 126 patients histologically diagnosed as GBM (n = 76) or AO (n = 50)...
Autores principales: | Fan, Yimeng, Chen, Chaoyue, Zhao, Fumin, Tian, Zerong, Wang, Jian, Ma, Xuelei, Xu, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848260/ https://www.ncbi.nlm.nih.gov/pubmed/31750250 http://dx.doi.org/10.3389/fonc.2019.01164 |
Ejemplares similares
-
Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach
por: Zhang, Yang, et al.
Publicado: (2019) -
Glioblastoma and Anaplastic Astrocytoma: Differentiation Using MRI Texture Analysis
por: Tian, Zerong, et al.
Publicado: (2019) -
Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques
por: Chen, Boran, et al.
Publicado: (2021) -
The feasibility of MRI texture analysis in distinguishing glioblastoma, anaplastic astrocytoma and anaplastic oligodendroglioma
por: Teng, Yuen, et al.
Publicado: (2022) -
Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors
por: Chen, Chaoyue, et al.
Publicado: (2019)