Cargando…
The hepatoprotective activities of Kalimeris indica ethanol extract against liver injury in vivo
Kalimeris indica (L.) Sch. Bip. is a traditional Chinese medicine (TCM) and a portion of food used for cooking in China. It has been demonstrated that an ethanol extract of K. indica has an anti‐inflammatory effect by inhibition of nitric oxide (NO) production on murine macrophage RAW264.7 cells aft...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848823/ https://www.ncbi.nlm.nih.gov/pubmed/31763029 http://dx.doi.org/10.1002/fsn3.1241 |
Sumario: | Kalimeris indica (L.) Sch. Bip. is a traditional Chinese medicine (TCM) and a portion of food used for cooking in China. It has been demonstrated that an ethanol extract of K. indica has an anti‐inflammatory effect by inhibition of nitric oxide (NO) production on murine macrophage RAW264.7 cells after lipopolysaccharide (LPS) induction. In this study, the hepatoprotective effects of the total phenolics of K. indica (TPK), the total triterpenes of K. indica (TTK), and the total flavones of K. indica (TFK) from ethanol extracts of K. indica were evaluated in Bacille Calmette–Guerin (BCG)/LPS‐induced liver injury in vivo. The treatments of TPK, TTK, and TFK improved liver injury in mice. Additionally, all treatments significantly not only reduced the hepatic malondialdehyde (MDA) content and hepatic total nitric oxide synthase (tNOS) but also induced the hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH‐Px) activity. The treatments of TPK and TTK significantly reduced the hepatic inducible nitric oxide synthase (iNOS). The treatments of TPK, TTK, and TFK reduced the serum total bilirubin (T‐Bil), and only TFK treatment reduced the serum alanine aminotransferase (ALT). Our results suggest that TPK, TTK, and TFK from ethanol extracts of K. indica might play an essential protective role against BCG/LPS‐induced liver injury in vivo. |
---|