Cargando…
Parameter optimization of double‐blade normal milk processing and mixing performance based on RSM and BP‐GA
Temperature stability was taken as the evaluation index of processing performance, and the three factors that influence normal milk processing and mixing performance were optimized by response surface analysis and BP‐GA neural network algorithm. Analysis results showed the influence order of the fac...
Autores principales: | Qi, Jiangtao, Zhao, Wenwen, Kan, Za, Meng, Hewei, Li, Yaping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848853/ https://www.ncbi.nlm.nih.gov/pubmed/31741736 http://dx.doi.org/10.1002/fsn3.1198 |
Ejemplares similares
-
Experimental Investigation and Optimization of Turning Polymers Using RSM, GA, Hybrid FFD-GA, and MOGA Methods
por: Alateyah, Abdulrahman I., et al.
Publicado: (2022) -
The Optimal Processing Parameters of Radial Ultrasonic Rolling Electrochemical Micromachining—RSM Approach
por: He, Kailei, et al.
Publicado: (2020) -
Understanding Machining Process Parameters and Optimization of High-Speed Turning of NiTi SMA Using Response Surface Method (RSM) and Genetic Algorithm (GA)
por: Zhao, Yanzhe, et al.
Publicado: (2023) -
RSM–GA Based Optimization of Bacterial PHA Production and In Silico Modulation of Citrate Synthase for Enhancing PHA Production
por: Rao, Apoorva, et al.
Publicado: (2019) -
PSO-BP Neural Network-Based Strain Prediction of Wind Turbine Blades
por: Liu, Xin, et al.
Publicado: (2019)