Cargando…
Improvements of Microcontact Printing for Micropatterned Cell Growth by Contrast Enhancement
Patterned neuronal cell cultures are important tools for investigating neuronal signal integration, network function, and cell–substrate interactions. Because of the variable nature of neuronal cells, the widely used coating method of microcontact printing is in constant need of improvements and ada...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848919/ https://www.ncbi.nlm.nih.gov/pubmed/31574944 http://dx.doi.org/10.3390/mi10100659 |
_version_ | 1783469102081245184 |
---|---|
author | Hondrich, Timm J. J. Deußen, Oliver Grannemann, Caroline Brinkmann, Dominik Offenhäusser, Andreas |
author_facet | Hondrich, Timm J. J. Deußen, Oliver Grannemann, Caroline Brinkmann, Dominik Offenhäusser, Andreas |
author_sort | Hondrich, Timm J. J. |
collection | PubMed |
description | Patterned neuronal cell cultures are important tools for investigating neuronal signal integration, network function, and cell–substrate interactions. Because of the variable nature of neuronal cells, the widely used coating method of microcontact printing is in constant need of improvements and adaptations depending on the pattern, cell type, and coating solutions available for a certain experimental system. In this work, we report on three approaches to modify microcontact printing on borosilicate glass surfaces, which we evaluate with contact angle measurements and by determining the quality of patterned neuronal growth. Although background toxification with manganese salt does not result in the desired pattern enhancement, a simple heat treatment of the glass substrates leads to improved background hydrophobicity and therefore neuronal patterning. Thirdly, we extended a microcontact printing process based on covalently linking the glass surface and the coating molecule via an epoxysilane. This extension is an additional hydrophobization step with dodecylamine. We demonstrate that shelf life of the silanized glass is at least 22 weeks, leading to consistently reliable neuronal patterning by microcontact printing. Thus, we compared three practical additions to microcontact printing, two of which can easily be implemented into a workflow for the investigation of patterned neuronal networks. |
format | Online Article Text |
id | pubmed-6848919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68489192019-11-18 Improvements of Microcontact Printing for Micropatterned Cell Growth by Contrast Enhancement Hondrich, Timm J. J. Deußen, Oliver Grannemann, Caroline Brinkmann, Dominik Offenhäusser, Andreas Micromachines (Basel) Article Patterned neuronal cell cultures are important tools for investigating neuronal signal integration, network function, and cell–substrate interactions. Because of the variable nature of neuronal cells, the widely used coating method of microcontact printing is in constant need of improvements and adaptations depending on the pattern, cell type, and coating solutions available for a certain experimental system. In this work, we report on three approaches to modify microcontact printing on borosilicate glass surfaces, which we evaluate with contact angle measurements and by determining the quality of patterned neuronal growth. Although background toxification with manganese salt does not result in the desired pattern enhancement, a simple heat treatment of the glass substrates leads to improved background hydrophobicity and therefore neuronal patterning. Thirdly, we extended a microcontact printing process based on covalently linking the glass surface and the coating molecule via an epoxysilane. This extension is an additional hydrophobization step with dodecylamine. We demonstrate that shelf life of the silanized glass is at least 22 weeks, leading to consistently reliable neuronal patterning by microcontact printing. Thus, we compared three practical additions to microcontact printing, two of which can easily be implemented into a workflow for the investigation of patterned neuronal networks. MDPI 2019-09-30 /pmc/articles/PMC6848919/ /pubmed/31574944 http://dx.doi.org/10.3390/mi10100659 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hondrich, Timm J. J. Deußen, Oliver Grannemann, Caroline Brinkmann, Dominik Offenhäusser, Andreas Improvements of Microcontact Printing for Micropatterned Cell Growth by Contrast Enhancement |
title | Improvements of Microcontact Printing for Micropatterned Cell Growth by Contrast Enhancement |
title_full | Improvements of Microcontact Printing for Micropatterned Cell Growth by Contrast Enhancement |
title_fullStr | Improvements of Microcontact Printing for Micropatterned Cell Growth by Contrast Enhancement |
title_full_unstemmed | Improvements of Microcontact Printing for Micropatterned Cell Growth by Contrast Enhancement |
title_short | Improvements of Microcontact Printing for Micropatterned Cell Growth by Contrast Enhancement |
title_sort | improvements of microcontact printing for micropatterned cell growth by contrast enhancement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848919/ https://www.ncbi.nlm.nih.gov/pubmed/31574944 http://dx.doi.org/10.3390/mi10100659 |
work_keys_str_mv | AT hondrichtimmjj improvementsofmicrocontactprintingformicropatternedcellgrowthbycontrastenhancement AT deußenoliver improvementsofmicrocontactprintingformicropatternedcellgrowthbycontrastenhancement AT grannemanncaroline improvementsofmicrocontactprintingformicropatternedcellgrowthbycontrastenhancement AT brinkmanndominik improvementsofmicrocontactprintingformicropatternedcellgrowthbycontrastenhancement AT offenhausserandreas improvementsofmicrocontactprintingformicropatternedcellgrowthbycontrastenhancement |