Cargando…
Impact of Mechanical Processes as a Pre-Sulphonitriding Treatment on Tribology Properties of Selected P/M Tool Steels
We have evaluated phase composition changes in the surface layer (SL) and wear resistance of steels investigated after various mechanical processes such as a pre-sulphonitriding treatments. Two various paths of surface modification were employed: Grinding–sulphonitriding (G-SN) and hard turning–slid...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848935/ https://www.ncbi.nlm.nih.gov/pubmed/31635185 http://dx.doi.org/10.3390/ma12203431 |
Sumario: | We have evaluated phase composition changes in the surface layer (SL) and wear resistance of steels investigated after various mechanical processes such as a pre-sulphonitriding treatments. Two various paths of surface modification were employed: Grinding–sulphonitriding (G-SN) and hard turning–slide burnishing–sulphonitriding (T-B-SN). Studies were carried out on Vanadis 8 and Vancron 40 tool steels, which are classified as advanced powder metallurgy (P/M) high-alloyed steels with different types and amounts of carbides. Heat treatment to the final hardness of 64 ± 1 HRC (Vanadis 8) and 62 ± 1 HRC (Vancron 40) was performed in vacuum furnaces with gas quenching. Precipitation of different types such as sulfides, nitrides, and carbides was observed using X-ray diffraction analysis. Tribological properties of SL were evaluated by pin-on-disc experiments. Pins of Al(2)O(3) and 19MnB4 steel were used as counterbodies materials. 3D surface geometrical structure measurements were also performed. Wear tracks and cross-sections of SL were observed using optical and scanning electron microscopy. The three-stage process increases the wear resistance about 37% and 30%, respectively for Vanadis 8 and Vancron 40 (in case of alumina pins), whereas values of wear rates after tests performed against steel pins were very similar for two compared processes for both steels. |
---|