Cargando…
Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt
With excellent biocompatibility and biodegradability, silk fibroin has been developed into many protein materials. For producing regenerated silk fibroin (RSF) fibers, the conformation transition of silk fibroin needs to be thoroughly studied during the spinning process. Since the many silk fabrics...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848937/ https://www.ncbi.nlm.nih.gov/pubmed/31597253 http://dx.doi.org/10.3390/polym11101622 |
_version_ | 1783469106452758528 |
---|---|
author | Zhang, Xin Pan, Zhijuan |
author_facet | Zhang, Xin Pan, Zhijuan |
author_sort | Zhang, Xin |
collection | PubMed |
description | With excellent biocompatibility and biodegradability, silk fibroin has been developed into many protein materials. For producing regenerated silk fibroin (RSF) fibers, the conformation transition of silk fibroin needs to be thoroughly studied during the spinning process. Since the many silk fabrics that are discarded comprise an increasing waste of resources and increase the pressure on the environment, in this paper, waste silk fiber was recycled in an attempt to prepare regenerated fibroin fiber by dry-wet spinning. Ethanol was the coagulation bath. The rheological properties of all the RSF solutions were investigated to acquire rheology curves and non-Newtonian indexes for spinnability analysis. Four stages of the spinning process were carried out to obtain RSF samples and study their conformation transitions, crystallization, and thermal properties by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and differential scanning calorimetry. Quantitative analysis of the FTIR results was performed to obtain specific data regarding the contents of the secondary structures. The results showed that higher concentration spinning solutions had better spinnability. As the spinning process progressed, random coils were gradually converted into β-sheets and crystallization increased. Among the different influencing factors, the ethanol coagulation bath played a leading role in the conformation transitions of silk fibroin. |
format | Online Article Text |
id | pubmed-6848937 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68489372019-11-18 Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt Zhang, Xin Pan, Zhijuan Polymers (Basel) Article With excellent biocompatibility and biodegradability, silk fibroin has been developed into many protein materials. For producing regenerated silk fibroin (RSF) fibers, the conformation transition of silk fibroin needs to be thoroughly studied during the spinning process. Since the many silk fabrics that are discarded comprise an increasing waste of resources and increase the pressure on the environment, in this paper, waste silk fiber was recycled in an attempt to prepare regenerated fibroin fiber by dry-wet spinning. Ethanol was the coagulation bath. The rheological properties of all the RSF solutions were investigated to acquire rheology curves and non-Newtonian indexes for spinnability analysis. Four stages of the spinning process were carried out to obtain RSF samples and study their conformation transitions, crystallization, and thermal properties by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and differential scanning calorimetry. Quantitative analysis of the FTIR results was performed to obtain specific data regarding the contents of the secondary structures. The results showed that higher concentration spinning solutions had better spinnability. As the spinning process progressed, random coils were gradually converted into β-sheets and crystallization increased. Among the different influencing factors, the ethanol coagulation bath played a leading role in the conformation transitions of silk fibroin. MDPI 2019-10-08 /pmc/articles/PMC6848937/ /pubmed/31597253 http://dx.doi.org/10.3390/polym11101622 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Xin Pan, Zhijuan Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt |
title | Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt |
title_full | Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt |
title_fullStr | Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt |
title_full_unstemmed | Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt |
title_short | Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt |
title_sort | microstructure transitions and dry-wet spinnability of silk fibroin protein from waste silk quilt |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848937/ https://www.ncbi.nlm.nih.gov/pubmed/31597253 http://dx.doi.org/10.3390/polym11101622 |
work_keys_str_mv | AT zhangxin microstructuretransitionsanddrywetspinnabilityofsilkfibroinproteinfromwastesilkquilt AT panzhijuan microstructuretransitionsanddrywetspinnabilityofsilkfibroinproteinfromwastesilkquilt |