Cargando…
White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions
Optimizing direct electrical stimulation for the treatment of neurological disease remains difficult due to an incomplete understanding of its physical propagation through brain tissue. Here, we use network control theory to predict how stimulation spreads through white matter to influence spatially...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849479/ https://www.ncbi.nlm.nih.gov/pubmed/31484068 http://dx.doi.org/10.1016/j.celrep.2019.08.008 |
_version_ | 1783469214537875456 |
---|---|
author | Stiso, Jennifer Khambhati, Ankit N. Menara, Tommaso Kahn, Ari E. Stein, Joel M. Das, Sandihitsu R. Gorniak, Richard Tracy, Joseph Litt, Brian Davis, Kathryn A. Pasqualetti, Fabio Lucas, Timothy H. Bassett, Danielle S. |
author_facet | Stiso, Jennifer Khambhati, Ankit N. Menara, Tommaso Kahn, Ari E. Stein, Joel M. Das, Sandihitsu R. Gorniak, Richard Tracy, Joseph Litt, Brian Davis, Kathryn A. Pasqualetti, Fabio Lucas, Timothy H. Bassett, Danielle S. |
author_sort | Stiso, Jennifer |
collection | PubMed |
description | Optimizing direct electrical stimulation for the treatment of neurological disease remains difficult due to an incomplete understanding of its physical propagation through brain tissue. Here, we use network control theory to predict how stimulation spreads through white matter to influence spatially distributed dynamics. We test the theory’s predictions using a unique dataset comprising diffusion weighted imaging and electrocorticography in epilepsy patients undergoing grid stimulation. We find statistically significant shared variance between the predicted activity state transitions and the observed activity state transitions. We then use an optimal control framework to posit testable hypotheses regarding which brain states and structural properties will efficiently improve memory encoding when stimulated. Our work quantifies the role that white matter architecture plays in guiding the dynamics of direct electrical stimulation and offers empirical support for the utility of network control theory in explaining the brain’s response to stimulation. |
format | Online Article Text |
id | pubmed-6849479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-68494792019-11-12 White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions Stiso, Jennifer Khambhati, Ankit N. Menara, Tommaso Kahn, Ari E. Stein, Joel M. Das, Sandihitsu R. Gorniak, Richard Tracy, Joseph Litt, Brian Davis, Kathryn A. Pasqualetti, Fabio Lucas, Timothy H. Bassett, Danielle S. Cell Rep Article Optimizing direct electrical stimulation for the treatment of neurological disease remains difficult due to an incomplete understanding of its physical propagation through brain tissue. Here, we use network control theory to predict how stimulation spreads through white matter to influence spatially distributed dynamics. We test the theory’s predictions using a unique dataset comprising diffusion weighted imaging and electrocorticography in epilepsy patients undergoing grid stimulation. We find statistically significant shared variance between the predicted activity state transitions and the observed activity state transitions. We then use an optimal control framework to posit testable hypotheses regarding which brain states and structural properties will efficiently improve memory encoding when stimulated. Our work quantifies the role that white matter architecture plays in guiding the dynamics of direct electrical stimulation and offers empirical support for the utility of network control theory in explaining the brain’s response to stimulation. 2019-09-03 /pmc/articles/PMC6849479/ /pubmed/31484068 http://dx.doi.org/10.1016/j.celrep.2019.08.008 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Stiso, Jennifer Khambhati, Ankit N. Menara, Tommaso Kahn, Ari E. Stein, Joel M. Das, Sandihitsu R. Gorniak, Richard Tracy, Joseph Litt, Brian Davis, Kathryn A. Pasqualetti, Fabio Lucas, Timothy H. Bassett, Danielle S. White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions |
title | White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions |
title_full | White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions |
title_fullStr | White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions |
title_full_unstemmed | White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions |
title_short | White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions |
title_sort | white matter network architecture guides direct electrical stimulation through optimal state transitions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849479/ https://www.ncbi.nlm.nih.gov/pubmed/31484068 http://dx.doi.org/10.1016/j.celrep.2019.08.008 |
work_keys_str_mv | AT stisojennifer whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT khambhatiankitn whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT menaratommaso whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT kahnarie whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT steinjoelm whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT dassandihitsur whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT gorniakrichard whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT tracyjoseph whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT littbrian whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT daviskathryna whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT pasqualettifabio whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT lucastimothyh whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions AT bassettdanielles whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions |