Cargando…

White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions

Optimizing direct electrical stimulation for the treatment of neurological disease remains difficult due to an incomplete understanding of its physical propagation through brain tissue. Here, we use network control theory to predict how stimulation spreads through white matter to influence spatially...

Descripción completa

Detalles Bibliográficos
Autores principales: Stiso, Jennifer, Khambhati, Ankit N., Menara, Tommaso, Kahn, Ari E., Stein, Joel M., Das, Sandihitsu R., Gorniak, Richard, Tracy, Joseph, Litt, Brian, Davis, Kathryn A., Pasqualetti, Fabio, Lucas, Timothy H., Bassett, Danielle S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849479/
https://www.ncbi.nlm.nih.gov/pubmed/31484068
http://dx.doi.org/10.1016/j.celrep.2019.08.008
_version_ 1783469214537875456
author Stiso, Jennifer
Khambhati, Ankit N.
Menara, Tommaso
Kahn, Ari E.
Stein, Joel M.
Das, Sandihitsu R.
Gorniak, Richard
Tracy, Joseph
Litt, Brian
Davis, Kathryn A.
Pasqualetti, Fabio
Lucas, Timothy H.
Bassett, Danielle S.
author_facet Stiso, Jennifer
Khambhati, Ankit N.
Menara, Tommaso
Kahn, Ari E.
Stein, Joel M.
Das, Sandihitsu R.
Gorniak, Richard
Tracy, Joseph
Litt, Brian
Davis, Kathryn A.
Pasqualetti, Fabio
Lucas, Timothy H.
Bassett, Danielle S.
author_sort Stiso, Jennifer
collection PubMed
description Optimizing direct electrical stimulation for the treatment of neurological disease remains difficult due to an incomplete understanding of its physical propagation through brain tissue. Here, we use network control theory to predict how stimulation spreads through white matter to influence spatially distributed dynamics. We test the theory’s predictions using a unique dataset comprising diffusion weighted imaging and electrocorticography in epilepsy patients undergoing grid stimulation. We find statistically significant shared variance between the predicted activity state transitions and the observed activity state transitions. We then use an optimal control framework to posit testable hypotheses regarding which brain states and structural properties will efficiently improve memory encoding when stimulated. Our work quantifies the role that white matter architecture plays in guiding the dynamics of direct electrical stimulation and offers empirical support for the utility of network control theory in explaining the brain’s response to stimulation.
format Online
Article
Text
id pubmed-6849479
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-68494792019-11-12 White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions Stiso, Jennifer Khambhati, Ankit N. Menara, Tommaso Kahn, Ari E. Stein, Joel M. Das, Sandihitsu R. Gorniak, Richard Tracy, Joseph Litt, Brian Davis, Kathryn A. Pasqualetti, Fabio Lucas, Timothy H. Bassett, Danielle S. Cell Rep Article Optimizing direct electrical stimulation for the treatment of neurological disease remains difficult due to an incomplete understanding of its physical propagation through brain tissue. Here, we use network control theory to predict how stimulation spreads through white matter to influence spatially distributed dynamics. We test the theory’s predictions using a unique dataset comprising diffusion weighted imaging and electrocorticography in epilepsy patients undergoing grid stimulation. We find statistically significant shared variance between the predicted activity state transitions and the observed activity state transitions. We then use an optimal control framework to posit testable hypotheses regarding which brain states and structural properties will efficiently improve memory encoding when stimulated. Our work quantifies the role that white matter architecture plays in guiding the dynamics of direct electrical stimulation and offers empirical support for the utility of network control theory in explaining the brain’s response to stimulation. 2019-09-03 /pmc/articles/PMC6849479/ /pubmed/31484068 http://dx.doi.org/10.1016/j.celrep.2019.08.008 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Stiso, Jennifer
Khambhati, Ankit N.
Menara, Tommaso
Kahn, Ari E.
Stein, Joel M.
Das, Sandihitsu R.
Gorniak, Richard
Tracy, Joseph
Litt, Brian
Davis, Kathryn A.
Pasqualetti, Fabio
Lucas, Timothy H.
Bassett, Danielle S.
White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions
title White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions
title_full White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions
title_fullStr White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions
title_full_unstemmed White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions
title_short White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions
title_sort white matter network architecture guides direct electrical stimulation through optimal state transitions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849479/
https://www.ncbi.nlm.nih.gov/pubmed/31484068
http://dx.doi.org/10.1016/j.celrep.2019.08.008
work_keys_str_mv AT stisojennifer whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT khambhatiankitn whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT menaratommaso whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT kahnarie whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT steinjoelm whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT dassandihitsur whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT gorniakrichard whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT tracyjoseph whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT littbrian whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT daviskathryna whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT pasqualettifabio whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT lucastimothyh whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions
AT bassettdanielles whitematternetworkarchitectureguidesdirectelectricalstimulationthroughoptimalstatetransitions