Cargando…
Machine learning enables long time scale molecular photodynamics simulations
Photo-induced processes are fundamental in nature but accurate simulations of their dynamics are seriously limited by the cost of the underlying quantum chemical calculations, hampering their application for long time scales. Here we introduce a method based on machine learning to overcome this bott...
Autores principales: | Westermayr, Julia, Gastegger, Michael, Menger, Maximilian F. S. J., Mai, Sebastian, González, Leticia, Marquetand, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849489/ https://www.ncbi.nlm.nih.gov/pubmed/31857878 http://dx.doi.org/10.1039/c9sc01742a |
Ejemplares similares
-
Combining SchNet and SHARC: The SchNarc Machine Learning
Approach for Excited-State Dynamics
por: Westermayr, Julia, et al.
Publicado: (2020) -
Machine learning molecular dynamics for the simulation of infrared spectra
por: Gastegger, Michael, et al.
Publicado: (2017) -
Machine Learning for Electronically Excited States
of Molecules
por: Westermayr, Julia, et al.
Publicado: (2020) -
Ultrafast intersystem crossing dynamics in uracil unravelled by ab initio molecular dynamics
por: Richter, Martin, et al.
Publicado: (2014) -
BuRNN: Buffer Region Neural Network Approach for Polarizable-Embedding
Neural Network/Molecular Mechanics Simulations
por: Lier, Bettina, et al.
Publicado: (2022)