Cargando…

Trait‐based ecology of terrestrial arthropods

In focusing on how organisms' generalizable functional properties (traits) interact mechanistically with environments across spatial scales and levels of biological organization, trait‐based approaches provide a powerful framework for attaining synthesis, generality and prediction. Trait‐based...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Mark K. L., Guénard, Benoit, Lewis, Owen T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849530/
https://www.ncbi.nlm.nih.gov/pubmed/30548743
http://dx.doi.org/10.1111/brv.12488
_version_ 1783469224714305536
author Wong, Mark K. L.
Guénard, Benoit
Lewis, Owen T.
author_facet Wong, Mark K. L.
Guénard, Benoit
Lewis, Owen T.
author_sort Wong, Mark K. L.
collection PubMed
description In focusing on how organisms' generalizable functional properties (traits) interact mechanistically with environments across spatial scales and levels of biological organization, trait‐based approaches provide a powerful framework for attaining synthesis, generality and prediction. Trait‐based research has considerably improved understanding of the assembly, structure and functioning of plant communities. Further advances in ecology may be achieved by exploring the trait–environment relationships of non‐sessile, heterotrophic organisms such as terrestrial arthropods, which are geographically ubiquitous, ecologically diverse, and often important functional components of ecosystems. Trait‐based studies and trait databases have recently been compiled for groups such as ants, bees, beetles, butterflies, spiders and many others; however, the explicit justification, conceptual framework, and primary‐evidence base for the burgeoning field of ‘terrestrial arthropod trait‐based ecology’ have not been well established. Consequently, there is some confusion over the scope and relevance of this field, as well as a tendency for studies to overlook important assumptions of the trait‐based approach. Here we aim to provide a broad and accessible overview of the trait‐based ecology of terrestrial arthropods. We first define and illustrate foundational concepts in trait‐based ecology with respect to terrestrial arthropods, and justify the application of trait‐based approaches to the study of their ecology. Next, we review studies in community ecology where trait‐based approaches have been used to elucidate how assembly processes for terrestrial arthropod communities are influenced by niche filtering along environmental gradients (e.g. climatic, structural, and land‐use gradients) and by abiotic and biotic disturbances (e.g. fire, floods, and biological invasions). We also review studies in ecosystem ecology where trait‐based approaches have been used to investigate biodiversity–ecosystem function relationships: how the functional diversity of arthropod communities relates to a host of ecosystem functions and services that they mediate, such as decomposition, pollination and predation. We then suggest how future work can address fundamental assumptions and limitations by investigating trait functionality and the effects of intraspecific variation, assessing the potential for sampling methods to bias the traits and trait values observed, and enhancing the quality and consolidation of trait information in databases. A roadmap to guide observational trait‐based studies is also presented. Lastly, we highlight new areas where trait‐based studies on terrestrial arthropods are well positioned to advance ecological understanding and application. These include examining the roles of competitive, non‐competitive and (multi‐)trophic interactions in shaping coexistence, and macro‐scaling trait–environment relationships to explain and predict patterns in biodiversity and ecosystem functions across space and time. We hope this review will spur and guide future applications of the trait‐based framework to advance ecological insights from the most diverse eukaryotic organisms on Earth.
format Online
Article
Text
id pubmed-6849530
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-68495302019-11-15 Trait‐based ecology of terrestrial arthropods Wong, Mark K. L. Guénard, Benoit Lewis, Owen T. Biol Rev Camb Philos Soc Original Articles In focusing on how organisms' generalizable functional properties (traits) interact mechanistically with environments across spatial scales and levels of biological organization, trait‐based approaches provide a powerful framework for attaining synthesis, generality and prediction. Trait‐based research has considerably improved understanding of the assembly, structure and functioning of plant communities. Further advances in ecology may be achieved by exploring the trait–environment relationships of non‐sessile, heterotrophic organisms such as terrestrial arthropods, which are geographically ubiquitous, ecologically diverse, and often important functional components of ecosystems. Trait‐based studies and trait databases have recently been compiled for groups such as ants, bees, beetles, butterflies, spiders and many others; however, the explicit justification, conceptual framework, and primary‐evidence base for the burgeoning field of ‘terrestrial arthropod trait‐based ecology’ have not been well established. Consequently, there is some confusion over the scope and relevance of this field, as well as a tendency for studies to overlook important assumptions of the trait‐based approach. Here we aim to provide a broad and accessible overview of the trait‐based ecology of terrestrial arthropods. We first define and illustrate foundational concepts in trait‐based ecology with respect to terrestrial arthropods, and justify the application of trait‐based approaches to the study of their ecology. Next, we review studies in community ecology where trait‐based approaches have been used to elucidate how assembly processes for terrestrial arthropod communities are influenced by niche filtering along environmental gradients (e.g. climatic, structural, and land‐use gradients) and by abiotic and biotic disturbances (e.g. fire, floods, and biological invasions). We also review studies in ecosystem ecology where trait‐based approaches have been used to investigate biodiversity–ecosystem function relationships: how the functional diversity of arthropod communities relates to a host of ecosystem functions and services that they mediate, such as decomposition, pollination and predation. We then suggest how future work can address fundamental assumptions and limitations by investigating trait functionality and the effects of intraspecific variation, assessing the potential for sampling methods to bias the traits and trait values observed, and enhancing the quality and consolidation of trait information in databases. A roadmap to guide observational trait‐based studies is also presented. Lastly, we highlight new areas where trait‐based studies on terrestrial arthropods are well positioned to advance ecological understanding and application. These include examining the roles of competitive, non‐competitive and (multi‐)trophic interactions in shaping coexistence, and macro‐scaling trait–environment relationships to explain and predict patterns in biodiversity and ecosystem functions across space and time. We hope this review will spur and guide future applications of the trait‐based framework to advance ecological insights from the most diverse eukaryotic organisms on Earth. Blackwell Publishing Ltd 2018-12-13 2019-06 /pmc/articles/PMC6849530/ /pubmed/30548743 http://dx.doi.org/10.1111/brv.12488 Text en © 2018 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Wong, Mark K. L.
Guénard, Benoit
Lewis, Owen T.
Trait‐based ecology of terrestrial arthropods
title Trait‐based ecology of terrestrial arthropods
title_full Trait‐based ecology of terrestrial arthropods
title_fullStr Trait‐based ecology of terrestrial arthropods
title_full_unstemmed Trait‐based ecology of terrestrial arthropods
title_short Trait‐based ecology of terrestrial arthropods
title_sort trait‐based ecology of terrestrial arthropods
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849530/
https://www.ncbi.nlm.nih.gov/pubmed/30548743
http://dx.doi.org/10.1111/brv.12488
work_keys_str_mv AT wongmarkkl traitbasedecologyofterrestrialarthropods
AT guenardbenoit traitbasedecologyofterrestrialarthropods
AT lewisowent traitbasedecologyofterrestrialarthropods