Cargando…
Increased population size of fish in a lowland river following restoration of structural habitat
Most assessments of the effectiveness of river restoration are done at small spatial scales (<10 km) over short time frames (less than three years), potentially failing to capture large‐scale mechanisms such as completion of life‐history processes, changes to system productivity, or time lags of...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849704/ https://www.ncbi.nlm.nih.gov/pubmed/30946514 http://dx.doi.org/10.1002/eap.1882 |
_version_ | 1783469257573531648 |
---|---|
author | Lyon, Jarod P. Bird, Tomas J. Kearns, Joanne Nicol, Simon Tonkin, Zeb Todd, Charles R. O'Mahony, Justin Hackett, Graeme Raymond, Scott Lieschke, Jason Kitchingman, Adrian Bradshaw, Corey J. A. |
author_facet | Lyon, Jarod P. Bird, Tomas J. Kearns, Joanne Nicol, Simon Tonkin, Zeb Todd, Charles R. O'Mahony, Justin Hackett, Graeme Raymond, Scott Lieschke, Jason Kitchingman, Adrian Bradshaw, Corey J. A. |
author_sort | Lyon, Jarod P. |
collection | PubMed |
description | Most assessments of the effectiveness of river restoration are done at small spatial scales (<10 km) over short time frames (less than three years), potentially failing to capture large‐scale mechanisms such as completion of life‐history processes, changes to system productivity, or time lags of ecosystem responses. To test the hypothesis that populations of two species of large‐bodied, piscivorous, native fishes would increase in response to large‐scale structural habitat restoration (reintroduction of 4,450 pieces of coarse woody habitat into a 110‐km reach of the Murray River, southeastern Australia), we collected annual catch, effort, length, and tagging data over seven years for Murray cod (Maccullochella peelii) and golden perch (Macquaria ambigua) in a restored “intervention” reach and three neighboring “control” reaches. We supplemented mark–recapture data with telemetry and angler phone‐in data to assess the potentially confounding influences of movement among sampled populations, heterogeneous detection rates, and population vital rates. We applied a Bayesian hierarchical model to estimate changes in population parameters including immigration, emigration, and mortality rates. For Murray cod, we observed a threefold increase in abundance in the population within the intervention reach, while populations declined or fluctuated within the control reaches. Golden perch densities also increased twofold in the intervention reach. Our results indicate that restoring habitat heterogeneity by adding coarse woody habitats can increase the abundance of fish at a population scale in a large, lowland river. Successful restoration of poor‐quality “sink” habitats for target species relies on connectivity with high‐quality “source” habitats. We recommend that the analysis of restoration success across appropriately large spatial and temporal scales can help identify mechanisms and success rates of other restoration strategies such as restoring fish passage or delivering water for environmental outcomes. |
format | Online Article Text |
id | pubmed-6849704 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68497042019-11-15 Increased population size of fish in a lowland river following restoration of structural habitat Lyon, Jarod P. Bird, Tomas J. Kearns, Joanne Nicol, Simon Tonkin, Zeb Todd, Charles R. O'Mahony, Justin Hackett, Graeme Raymond, Scott Lieschke, Jason Kitchingman, Adrian Bradshaw, Corey J. A. Ecol Appl Articles Most assessments of the effectiveness of river restoration are done at small spatial scales (<10 km) over short time frames (less than three years), potentially failing to capture large‐scale mechanisms such as completion of life‐history processes, changes to system productivity, or time lags of ecosystem responses. To test the hypothesis that populations of two species of large‐bodied, piscivorous, native fishes would increase in response to large‐scale structural habitat restoration (reintroduction of 4,450 pieces of coarse woody habitat into a 110‐km reach of the Murray River, southeastern Australia), we collected annual catch, effort, length, and tagging data over seven years for Murray cod (Maccullochella peelii) and golden perch (Macquaria ambigua) in a restored “intervention” reach and three neighboring “control” reaches. We supplemented mark–recapture data with telemetry and angler phone‐in data to assess the potentially confounding influences of movement among sampled populations, heterogeneous detection rates, and population vital rates. We applied a Bayesian hierarchical model to estimate changes in population parameters including immigration, emigration, and mortality rates. For Murray cod, we observed a threefold increase in abundance in the population within the intervention reach, while populations declined or fluctuated within the control reaches. Golden perch densities also increased twofold in the intervention reach. Our results indicate that restoring habitat heterogeneity by adding coarse woody habitats can increase the abundance of fish at a population scale in a large, lowland river. Successful restoration of poor‐quality “sink” habitats for target species relies on connectivity with high‐quality “source” habitats. We recommend that the analysis of restoration success across appropriately large spatial and temporal scales can help identify mechanisms and success rates of other restoration strategies such as restoring fish passage or delivering water for environmental outcomes. John Wiley and Sons Inc. 2019-04-04 2019-06 /pmc/articles/PMC6849704/ /pubmed/30946514 http://dx.doi.org/10.1002/eap.1882 Text en © 2019 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Lyon, Jarod P. Bird, Tomas J. Kearns, Joanne Nicol, Simon Tonkin, Zeb Todd, Charles R. O'Mahony, Justin Hackett, Graeme Raymond, Scott Lieschke, Jason Kitchingman, Adrian Bradshaw, Corey J. A. Increased population size of fish in a lowland river following restoration of structural habitat |
title | Increased population size of fish in a lowland river following restoration of structural habitat |
title_full | Increased population size of fish in a lowland river following restoration of structural habitat |
title_fullStr | Increased population size of fish in a lowland river following restoration of structural habitat |
title_full_unstemmed | Increased population size of fish in a lowland river following restoration of structural habitat |
title_short | Increased population size of fish in a lowland river following restoration of structural habitat |
title_sort | increased population size of fish in a lowland river following restoration of structural habitat |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849704/ https://www.ncbi.nlm.nih.gov/pubmed/30946514 http://dx.doi.org/10.1002/eap.1882 |
work_keys_str_mv | AT lyonjarodp increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT birdtomasj increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT kearnsjoanne increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT nicolsimon increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT tonkinzeb increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT toddcharlesr increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT omahonyjustin increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT hackettgraeme increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT raymondscott increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT lieschkejason increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT kitchingmanadrian increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat AT bradshawcoreyja increasedpopulationsizeoffishinalowlandriverfollowingrestorationofstructuralhabitat |