Cargando…

Global photosynthetic capacity is optimized to the environment

Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (V (cmax)), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, b...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Nicholas G., Keenan, Trevor F., Colin Prentice, I., Wang, Han, Wright, Ian J., Niinemets, Ülo, Crous, Kristine Y., Domingues, Tomas F., Guerrieri, Rossella, Yoko Ishida, F., Kattge, Jens, Kruger, Eric L., Maire, Vincent, Rogers, Alistair, Serbin, Shawn P., Tarvainen, Lasse, Togashi, Henrique F., Townsend, Philip A., Wang, Meng, Weerasinghe, Lasantha K., Zhou, Shuang‐Xi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849754/
https://www.ncbi.nlm.nih.gov/pubmed/30609108
http://dx.doi.org/10.1111/ele.13210
_version_ 1783469269683535872
author Smith, Nicholas G.
Keenan, Trevor F.
Colin Prentice, I.
Wang, Han
Wright, Ian J.
Niinemets, Ülo
Crous, Kristine Y.
Domingues, Tomas F.
Guerrieri, Rossella
Yoko Ishida, F.
Kattge, Jens
Kruger, Eric L.
Maire, Vincent
Rogers, Alistair
Serbin, Shawn P.
Tarvainen, Lasse
Togashi, Henrique F.
Townsend, Philip A.
Wang, Meng
Weerasinghe, Lasantha K.
Zhou, Shuang‐Xi
author_facet Smith, Nicholas G.
Keenan, Trevor F.
Colin Prentice, I.
Wang, Han
Wright, Ian J.
Niinemets, Ülo
Crous, Kristine Y.
Domingues, Tomas F.
Guerrieri, Rossella
Yoko Ishida, F.
Kattge, Jens
Kruger, Eric L.
Maire, Vincent
Rogers, Alistair
Serbin, Shawn P.
Tarvainen, Lasse
Togashi, Henrique F.
Townsend, Philip A.
Wang, Meng
Weerasinghe, Lasantha K.
Zhou, Shuang‐Xi
author_sort Smith, Nicholas G.
collection PubMed
description Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (V (cmax)), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co‐optimization of carboxylation and water costs for photosynthesis, suggests that optimal V (cmax) can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field‐measured V (cmax) dataset for C(3) plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first‐order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs.
format Online
Article
Text
id pubmed-6849754
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-68497542019-11-15 Global photosynthetic capacity is optimized to the environment Smith, Nicholas G. Keenan, Trevor F. Colin Prentice, I. Wang, Han Wright, Ian J. Niinemets, Ülo Crous, Kristine Y. Domingues, Tomas F. Guerrieri, Rossella Yoko Ishida, F. Kattge, Jens Kruger, Eric L. Maire, Vincent Rogers, Alistair Serbin, Shawn P. Tarvainen, Lasse Togashi, Henrique F. Townsend, Philip A. Wang, Meng Weerasinghe, Lasantha K. Zhou, Shuang‐Xi Ecol Lett Letters Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (V (cmax)), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co‐optimization of carboxylation and water costs for photosynthesis, suggests that optimal V (cmax) can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field‐measured V (cmax) dataset for C(3) plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first‐order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs. John Wiley and Sons Inc. 2019-01-04 2019-03 /pmc/articles/PMC6849754/ /pubmed/30609108 http://dx.doi.org/10.1111/ele.13210 Text en © 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Letters
Smith, Nicholas G.
Keenan, Trevor F.
Colin Prentice, I.
Wang, Han
Wright, Ian J.
Niinemets, Ülo
Crous, Kristine Y.
Domingues, Tomas F.
Guerrieri, Rossella
Yoko Ishida, F.
Kattge, Jens
Kruger, Eric L.
Maire, Vincent
Rogers, Alistair
Serbin, Shawn P.
Tarvainen, Lasse
Togashi, Henrique F.
Townsend, Philip A.
Wang, Meng
Weerasinghe, Lasantha K.
Zhou, Shuang‐Xi
Global photosynthetic capacity is optimized to the environment
title Global photosynthetic capacity is optimized to the environment
title_full Global photosynthetic capacity is optimized to the environment
title_fullStr Global photosynthetic capacity is optimized to the environment
title_full_unstemmed Global photosynthetic capacity is optimized to the environment
title_short Global photosynthetic capacity is optimized to the environment
title_sort global photosynthetic capacity is optimized to the environment
topic Letters
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849754/
https://www.ncbi.nlm.nih.gov/pubmed/30609108
http://dx.doi.org/10.1111/ele.13210
work_keys_str_mv AT smithnicholasg globalphotosyntheticcapacityisoptimizedtotheenvironment
AT keenantrevorf globalphotosyntheticcapacityisoptimizedtotheenvironment
AT colinprenticei globalphotosyntheticcapacityisoptimizedtotheenvironment
AT wanghan globalphotosyntheticcapacityisoptimizedtotheenvironment
AT wrightianj globalphotosyntheticcapacityisoptimizedtotheenvironment
AT niinemetsulo globalphotosyntheticcapacityisoptimizedtotheenvironment
AT crouskristiney globalphotosyntheticcapacityisoptimizedtotheenvironment
AT dominguestomasf globalphotosyntheticcapacityisoptimizedtotheenvironment
AT guerrierirossella globalphotosyntheticcapacityisoptimizedtotheenvironment
AT yokoishidaf globalphotosyntheticcapacityisoptimizedtotheenvironment
AT kattgejens globalphotosyntheticcapacityisoptimizedtotheenvironment
AT krugerericl globalphotosyntheticcapacityisoptimizedtotheenvironment
AT mairevincent globalphotosyntheticcapacityisoptimizedtotheenvironment
AT rogersalistair globalphotosyntheticcapacityisoptimizedtotheenvironment
AT serbinshawnp globalphotosyntheticcapacityisoptimizedtotheenvironment
AT tarvainenlasse globalphotosyntheticcapacityisoptimizedtotheenvironment
AT togashihenriquef globalphotosyntheticcapacityisoptimizedtotheenvironment
AT townsendphilipa globalphotosyntheticcapacityisoptimizedtotheenvironment
AT wangmeng globalphotosyntheticcapacityisoptimizedtotheenvironment
AT weerasinghelasanthak globalphotosyntheticcapacityisoptimizedtotheenvironment
AT zhoushuangxi globalphotosyntheticcapacityisoptimizedtotheenvironment