Cargando…
Use of a Doppler‐Based Pulsatility Index to Evaluate Cerebral Hemodynamics in Neurocritical Patients After Hemicraniectomy
OBJECTIVES: As a noninvasive method for evaluation of cerebral hemodynamics, the correct interpretation of transcranial Doppler or transcranial imaging (TCI) data remains a major challenge. We explored how to interpret the pulsatility index (PI) derived via TCI during evaluations of cerebral hemodyn...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850122/ https://www.ncbi.nlm.nih.gov/pubmed/30697782 http://dx.doi.org/10.1002/jum.14945 |
Sumario: | OBJECTIVES: As a noninvasive method for evaluation of cerebral hemodynamics, the correct interpretation of transcranial Doppler or transcranial imaging (TCI) data remains a major challenge. We explored how to interpret the pulsatility index (PI) derived via TCI during evaluations of cerebral hemodynamics in posthemicraniectomy patients. METHODS: We included patients who underwent invasive arterial pressure and intracranial pressure (ICP) monitoring and simultaneous TCI examinations after hemicraniectomy. We classified the PI of the middle cerebral artery (MCA) into ipsilateral (craniectomy side) and contralateral (opposite side) and analyzed both data sets. The statistical analysis was performed by the Bland‐Altman approach, by calculating intraclass correlation coefficients and Spearman correlations, and by drawing receiver operating characteristic curves. Pulsatility index probability charts were created for ICPs exceeding 20, 25, and 30 mm Hg and cerebral perfusion pressures (CPPs) lower than 70, 60, and 50 mm Hg; we thus explored defined ICP and CPP values. RESULTS: The ipsilateral and contralateral MCA PI data differed. Only the ipsilateral MCA PI showed a weak correlation with ICP (r = 0.378; P < .001). The receiver operating characteristic curve analysis revealed limited diagnostic utility of bilateral MCA PIs for ICP and CPP assessments. An extremely elevated MCA PI indicated that patients were at high risk of a dangerous ICP elevation or CPP reduction. However, MCA PI values within the normal range did not effectively rule out an ICP of 20 mm Hg or higher but effectively eliminated a CPP lower than 50 mm Hg. CONCLUSIONS: In posthemicraniectomy patients, the Doppler‐based MCA PI value was ineffectively for quantitative ICP and CPP evaluations but a useful index for assessment of cerebral hemodynamics in terms of the probability of an ICP elevation or a CPP reduction. |
---|