Cargando…
Shifting the paradigm in Evolve and Resequence studies: From analysis of single nucleotide polymorphisms to selected haplotype blocks
For almost a decade the combination of whole genome sequencing with experimental evolution (Evolve and Resequence, E&R; Turner, Stewart, Fields, Rice, & Tarone, 2011) has been used to study adaptation in outcrossing organisms. However, complications caused by inversions and hitchhiking varia...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850332/ https://www.ncbi.nlm.nih.gov/pubmed/30793868 http://dx.doi.org/10.1111/mec.14992 |
Sumario: | For almost a decade the combination of whole genome sequencing with experimental evolution (Evolve and Resequence, E&R; Turner, Stewart, Fields, Rice, & Tarone, 2011) has been used to study adaptation in outcrossing organisms. However, complications caused by inversions and hitchhiking variants have prevented this powerful approach from living up to its potential. In this issue of Molecular Ecology, Michalak, Kang, Schou, Garner, and Loeschke (2018), provide an important step ahead by using a population of Drosophila melanogaster devoid of segregating inversions to identify the genetic basis of resistance to five environmental stressors. They further address the challenge of hitchhiking variants by reconstructing selected haplotype blocks. While it is apparent that the haplotype block reconstruction needs further refinements, their work underpins the potential of E&R studies in Drosophila to address fundamental questions in evolutionary biology. |
---|