Cargando…
Extracellular Vesicle‐Educated Macrophages Promote Early Achilles Tendon Healing
Tendon healing follows a complex series of coordinated events, which ultimately produces a mechanically inferior tissue more scar‐like than native tendon. More regenerative healing occurs when anti‐inflammatory M2 macrophages play a more dominant role. Mesenchymal stromal/stem cells (MSCs) are able...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850358/ https://www.ncbi.nlm.nih.gov/pubmed/30720911 http://dx.doi.org/10.1002/stem.2988 |
_version_ | 1783469407594348544 |
---|---|
author | Chamberlain, Connie S. Clements, Anna E. B. Kink, John A. Choi, Ugeun Baer, Geoffrey S. Halanski, Matthew A. Hematti, Peiman Vanderby, Ray |
author_facet | Chamberlain, Connie S. Clements, Anna E. B. Kink, John A. Choi, Ugeun Baer, Geoffrey S. Halanski, Matthew A. Hematti, Peiman Vanderby, Ray |
author_sort | Chamberlain, Connie S. |
collection | PubMed |
description | Tendon healing follows a complex series of coordinated events, which ultimately produces a mechanically inferior tissue more scar‐like than native tendon. More regenerative healing occurs when anti‐inflammatory M2 macrophages play a more dominant role. Mesenchymal stromal/stem cells (MSCs) are able to polarize macrophages to an M2 immunophenotype via paracrine mechanisms. We previously reported that coculture of CD14+ macrophages (MQs) with MSCs resulted in a unique M2‐like macrophage. More recently, we generated M2‐like macrophages using only extracellular vesicles (EVs) isolated from MSCs creating “EV‐educated macrophages” (also called exosome‐educated macrophages [EEMs]), thereby foregoing direct use of MSCs. For the current study, we hypothesized that cell therapy with EEMs would improve in vivo tendon healing by modulating tissue inflammation and endogenous macrophage immunophenotypes. We evaluated effects of EEMs using a mouse Achilles tendon rupture model and compared results to normal tendon healing (without any biologic intervention), MSCs, MQs, or EVs. We found that exogenous administration of EEMs directly into the wound promoted a healing response that was significantly more functional and more regenerative. Injured tendons treated with exogenous EEMs exhibited (a) improved mechanical properties, (b) reduced inflammation, and (c) earlier angiogenesis. Treatment with MSC‐derived EVs alone were less effective functionally but stimulated a biological response as evidenced by an increased number of endothelial cells and decreased M1/M2 ratio. Because of their regenerative and immunomodulatory effects, EEM treament could provide a novel strategy to promote wound healing in this and various other musculoskeletal injuries or pathologies where inflammation and inadequate healing is problematic. Stem Cells 2019;37:652–662 |
format | Online Article Text |
id | pubmed-6850358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68503582019-11-18 Extracellular Vesicle‐Educated Macrophages Promote Early Achilles Tendon Healing Chamberlain, Connie S. Clements, Anna E. B. Kink, John A. Choi, Ugeun Baer, Geoffrey S. Halanski, Matthew A. Hematti, Peiman Vanderby, Ray Stem Cells Regenerative Medicine Tendon healing follows a complex series of coordinated events, which ultimately produces a mechanically inferior tissue more scar‐like than native tendon. More regenerative healing occurs when anti‐inflammatory M2 macrophages play a more dominant role. Mesenchymal stromal/stem cells (MSCs) are able to polarize macrophages to an M2 immunophenotype via paracrine mechanisms. We previously reported that coculture of CD14+ macrophages (MQs) with MSCs resulted in a unique M2‐like macrophage. More recently, we generated M2‐like macrophages using only extracellular vesicles (EVs) isolated from MSCs creating “EV‐educated macrophages” (also called exosome‐educated macrophages [EEMs]), thereby foregoing direct use of MSCs. For the current study, we hypothesized that cell therapy with EEMs would improve in vivo tendon healing by modulating tissue inflammation and endogenous macrophage immunophenotypes. We evaluated effects of EEMs using a mouse Achilles tendon rupture model and compared results to normal tendon healing (without any biologic intervention), MSCs, MQs, or EVs. We found that exogenous administration of EEMs directly into the wound promoted a healing response that was significantly more functional and more regenerative. Injured tendons treated with exogenous EEMs exhibited (a) improved mechanical properties, (b) reduced inflammation, and (c) earlier angiogenesis. Treatment with MSC‐derived EVs alone were less effective functionally but stimulated a biological response as evidenced by an increased number of endothelial cells and decreased M1/M2 ratio. Because of their regenerative and immunomodulatory effects, EEM treament could provide a novel strategy to promote wound healing in this and various other musculoskeletal injuries or pathologies where inflammation and inadequate healing is problematic. Stem Cells 2019;37:652–662 John Wiley & Sons, Inc. 2019-02-22 2019-05 /pmc/articles/PMC6850358/ /pubmed/30720911 http://dx.doi.org/10.1002/stem.2988 Text en © 2019 The Authors. stem cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019 This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Regenerative Medicine Chamberlain, Connie S. Clements, Anna E. B. Kink, John A. Choi, Ugeun Baer, Geoffrey S. Halanski, Matthew A. Hematti, Peiman Vanderby, Ray Extracellular Vesicle‐Educated Macrophages Promote Early Achilles Tendon Healing |
title | Extracellular Vesicle‐Educated Macrophages Promote Early Achilles Tendon Healing |
title_full | Extracellular Vesicle‐Educated Macrophages Promote Early Achilles Tendon Healing |
title_fullStr | Extracellular Vesicle‐Educated Macrophages Promote Early Achilles Tendon Healing |
title_full_unstemmed | Extracellular Vesicle‐Educated Macrophages Promote Early Achilles Tendon Healing |
title_short | Extracellular Vesicle‐Educated Macrophages Promote Early Achilles Tendon Healing |
title_sort | extracellular vesicle‐educated macrophages promote early achilles tendon healing |
topic | Regenerative Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850358/ https://www.ncbi.nlm.nih.gov/pubmed/30720911 http://dx.doi.org/10.1002/stem.2988 |
work_keys_str_mv | AT chamberlainconnies extracellularvesicleeducatedmacrophagespromoteearlyachillestendonhealing AT clementsannaeb extracellularvesicleeducatedmacrophagespromoteearlyachillestendonhealing AT kinkjohna extracellularvesicleeducatedmacrophagespromoteearlyachillestendonhealing AT choiugeun extracellularvesicleeducatedmacrophagespromoteearlyachillestendonhealing AT baergeoffreys extracellularvesicleeducatedmacrophagespromoteearlyachillestendonhealing AT halanskimatthewa extracellularvesicleeducatedmacrophagespromoteearlyachillestendonhealing AT hemattipeiman extracellularvesicleeducatedmacrophagespromoteearlyachillestendonhealing AT vanderbyray extracellularvesicleeducatedmacrophagespromoteearlyachillestendonhealing |