Cargando…
Comparative analysis on Facebook post interaction using DNN, ELM and LSTM
This study presents a novel research approach to predict user interaction for social media post using machine learning algorithms. The posts are converted to vector form using word2vec and doc2vec model. These two methods are used to analyse the best approach for generating word embeddings. The gene...
Autores principales: | Khan, Sabih Ahmad, Chang, Hsien-Tsung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850539/ https://www.ncbi.nlm.nih.gov/pubmed/31714918 http://dx.doi.org/10.1371/journal.pone.0224452 |
Ejemplares similares
-
A hybrid DNN–LSTM model for detecting phishing URLs
por: Ozcan, Alper, et al.
Publicado: (2021) -
The comparative analysis of SARIMA, Facebook Prophet, and LSTM for road traffic injury prediction in Northeast China
por: Feng, Tianyu, et al.
Publicado: (2022) -
Comparison of ARIMA model, DNN model and LSTM model in predicting disease burden of occupational pneumoconiosis in Tianjin, China
por: Lou, He-Ren, et al.
Publicado: (2022) -
LSTM-based sentiment analysis for stock price forecast
por: Ko, Ching-Ru, et al.
Publicado: (2021) -
Improved VMD-ELM Algorithm for MEMS Gyroscope of Temperature Compensation Model Based on CNN-LSTM and PSO-SVM
por: Wang, Xinwang, et al.
Publicado: (2022)