Cargando…

From Bugs to Bioplastics: Total (+)‐Dihydrocarvide Biosynthesis by Engineered Escherichia coli

The monoterpenoid lactone derivative (+)‐dihydrocarvide ((+)‐DHCD) can be polymerised to form shape‐memory polymers. Synthetic biology routes from simple, inexpensive carbon sources are an attractive, alternative route over chemical synthesis from (R)‐carvone. We have demonstrated a proof‐of‐princip...

Descripción completa

Detalles Bibliográficos
Autores principales: Ascue Avalos, Gabriel A., Toogood, Helen S., Tait, Shirley, Messiha, Hanan L., Scrutton, Nigel S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850611/
https://www.ncbi.nlm.nih.gov/pubmed/30431225
http://dx.doi.org/10.1002/cbic.201800606
Descripción
Sumario:The monoterpenoid lactone derivative (+)‐dihydrocarvide ((+)‐DHCD) can be polymerised to form shape‐memory polymers. Synthetic biology routes from simple, inexpensive carbon sources are an attractive, alternative route over chemical synthesis from (R)‐carvone. We have demonstrated a proof‐of‐principle in vivo approach for the complete biosynthesis of (+)‐DHCD from glucose in Escherichia coli (6.6 mg L(−1)). The pathway is based on the Mentha spicata route to (R)‐carvone, with the addition of an ′ene′‐reductase and Baeyer–Villiger cyclohexanone monooxygenase. Co‐expression with a limonene synthesis pathway enzyme enables complete biocatalytic production within one microbial chassis. (+)‐DHCD was successfully produced by screening multiple homologues of the pathway genes, combined with expression optimisation by selective promoter and/or ribosomal binding‐site screening. This study demonstrates the potential application of synthetic biology approaches in the development of truly sustainable and renewable bioplastic monomers.