Cargando…
Resveratrol decreases CD45(+)CD206(−) subtype macrophages in LPS‐induced murine acute lung injury by SOCS3 signalling pathway
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are life‐threatening condition in critically ill patients. Resveratrol (Res), a natural polyphenol, has therapeutic effect in animal model with ALI; however, whether Res attenuates ALI through modulation of macrophage phenotypes in the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850919/ https://www.ncbi.nlm.nih.gov/pubmed/31559687 http://dx.doi.org/10.1111/jcmm.14680 |
Sumario: | Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are life‐threatening condition in critically ill patients. Resveratrol (Res), a natural polyphenol, has therapeutic effect in animal model with ALI; however, whether Res attenuates ALI through modulation of macrophage phenotypes in the animal model remains unknown. We in this study treated LPS‐induced murine ALI with 30 mg/kg Res and observed significantly reduced severity of ALI in the Res‐treated mice 48 hours after Res treatment. Neutrophil infiltrates were significantly reduced, accompanied with lower infiltration of CD45(+)Siglec F(−) phenotype macrophages, but higher population of CD45(+)Siglec F(+) and CD45(+)CD206(+) alternatively activated macrophages (M2 cells) in the Res‐treated mice with ALI. In addition, the expression of IL‐1beta and CXCL15 cytokines was suppressed in the treated mice. However, Res treatment in mice with myeloid cell‐restricted SOCS3 deficiency did not significantly attenuate ALI severity and failed to increase population of both CD45(+)Siglec F(+) and CD45(+)CD206(+) M2 subtype macrophages in the murine ALI. Further studies in wild‐type macrophages revealed that Res treatment effectively reduced the expression of IL‐6 and CXCL15, and increased the expression of arginase‐1, SIRT1 and SOCS3. However, macrophages’ lack of SOCS3 expression were resistant to the Res‐induced suppression of IL‐6 and CXCL15 in vitro. Thus, we conclude that Res suppressed CD45(+)Siglec F(−) and CD45(+)CD206(−) M1 subtype macrophages through SOCS3 signalling in the LPS‐induced murine ALI. |
---|