Cargando…
The roles of circRFWD2 and circINO80 during NELL‐1‐induced osteogenesis
Bone defects caused heavy social and economic burdens worldwide. Nel‐like molecule, type 1 (NELL‐1) could enhance the osteogenesis and the repairment of bone defects, while the specific mechanism remains to be elucidated. Circular RNAs (circRNAs) have been found to play critical roles in the tissue...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850935/ https://www.ncbi.nlm.nih.gov/pubmed/31633307 http://dx.doi.org/10.1111/jcmm.14726 |
Sumario: | Bone defects caused heavy social and economic burdens worldwide. Nel‐like molecule, type 1 (NELL‐1) could enhance the osteogenesis and the repairment of bone defects, while the specific mechanism remains to be elucidated. Circular RNAs (circRNAs) have been found to play critical roles in the tissue development and serve as biomarkers for various diseases. However, it remains unclear that the expression patterns of circRNAs and the roles of them played in recombinant NELL‐1‐induced osteogenesis of human adipose‐derived stem cells (hASCs). In this study, we performed RNA‐sequencing to investigate the expression profiles of circRNAs in recombinant NELL‐1‐induced osteogenic differentiation and identified two key circRNAs, namely circRFWD2 and circINO80. These two circRNAs were confirmed to be up‐regulated during recombinant NELL‐1‐induced osteogenesis, and knockdown of them affected the positive effect of NELL‐1 on osteogenesis. CircRFWD2 and circINO80 could interact with hsa‐miR‐6817‐5p, which could inhibit the osteogenesis. Silencing hsa‐miR‐6817‐5p could partially reverse the negative effect of si‐circRFWD2 and si‐circINO80 on the osteogenesis. Therefore, circRFWD2 and circINO80 could regulate the expression of hsa‐miR‐6817‐5p and influence the recombinant NELL‐1‐induced osteogenic differentiation of hASCs. It opens a new window to better understanding the effects of NELL‐1 on the osteogenic differentiation of hASCs and provides potential molecular targets and novel methods for bone regeneration efficiently and safely. |
---|