Cargando…

Arginine‐ but not alanine‐rich carboxy‐termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti

Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant‐negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a r...

Descripción completa

Detalles Bibliográficos
Autores principales: Renz, Patricia, Imahorn, Elias, Spoerri, Iris, Aushev, Magomet, March, Oliver P., Wariwoda, Hedwig, Von Arb, Sarah, Volz, Andreas, Itin, Peter H., Reichelt, Julia, Burger, Bettina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850952/
https://www.ncbi.nlm.nih.gov/pubmed/31638346
http://dx.doi.org/10.1111/jcmm.14727
Descripción
Sumario:Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant‐negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a result of the altered carboxy (C)‐terminus, from poly‐glycine to either a poly‐arginine or ‐alanine tail. Previous studies on the type of C‐terminus and subcellular localization of the respective mutant protein are divergent. In order to fully elucidate the pathomechanism of IWC, a greater understanding is critical. This study aimed to establish the consequences for localization and intermediate filament formation of altered keratin 10 (K10) C‐termini. To achieve this, plasmids expressing distinct KRT10 variants were generated. Sequences encoded all possible reading frames of the K10 C‐terminus as well as a nonsense variant. A keratinocyte line was transfected with these plasmids. Additionally, gene editing was utilized to introduce frameshift variants in exon 6 and exon 7 at the endogenous KRT10 locus. Cellular localization of aberrant K10 was observed via immunofluorescence using various antibodies. In each setting, immunofluorescence analysis demonstrated aberrant nuclear localization of K10 featuring an arginine‐rich C‐terminus. However, this was not observed with K10 featuring an alanine‐rich C‐terminus. Instead, the protein displayed cytoplasmic localization, consistent with wild‐type and truncated forms of K10. This study demonstrates that, of the various 3′ frameshift variants of KRT10, exclusively arginine‐rich C‐termini lead to nuclear localization of K10.