Cargando…
Monitoring maturation of neural stem cell grafts within a host microenvironment
Neural stem cells (NSC) act as a versatile tool for neuronal cell replacement strategies to treat neurodegenerative disorders in which functional neurorestorative mechanisms are limited. While the beneficial effects of such cell-based therapy have already been documented in terms of neurodegeneratio...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851006/ https://www.ncbi.nlm.nih.gov/pubmed/31768224 http://dx.doi.org/10.4252/wjsc.v11.i11.982 |
Sumario: | Neural stem cells (NSC) act as a versatile tool for neuronal cell replacement strategies to treat neurodegenerative disorders in which functional neurorestorative mechanisms are limited. While the beneficial effects of such cell-based therapy have already been documented in terms of neurodegeneration of various origins, a neurophysiological basis for improvement in the recovery of neurological function is still not completely understood. This overview briefly describes the cumulative evidence from electrophysiological studies of NSC-derived neurons, aimed at establishing the maturation of differentiated neurons within a host microenvironment, and their integration into the host circuits, with a particular focus on the neurogenesis of NSC grafts within the post-ischemic milieu. Overwhelming evidence demonstrates that the host microenvironment largely regulates the lineage of NSC grafts. This regulatory role, as yet underestimated, raises possibilities for the favoured maturation of a subset of neural phenotypes in order to gain timely remodelling of the impaired brain tissue and amplify the therapeutic effects of NSC-based therapy for recovery of neurological function. |
---|