Cargando…
Carbon isotopic evidence for rapid methane clathrate release recorded in coals at the terminus of the Late Palaeozoic Ice Age
The end of the Late Palaeozoic Ice Age (LPIA) ushered in a period of significant change in Earth’s carbon cycle, demonstrated by the widespread occurrence of coals worldwide. In this study, we present stratigraphically constrained organic stable carbon isotope (δ(13)C(org)) data for Early Permian co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851110/ https://www.ncbi.nlm.nih.gov/pubmed/31719563 http://dx.doi.org/10.1038/s41598-019-52863-6 |
Sumario: | The end of the Late Palaeozoic Ice Age (LPIA) ushered in a period of significant change in Earth’s carbon cycle, demonstrated by the widespread occurrence of coals worldwide. In this study, we present stratigraphically constrained organic stable carbon isotope (δ(13)C(org)) data for Early Permian coals (312 vitrain samples) from the Moatize Basin, Mozambique, which record the transition from global icehouse to greenhouse conditions. These coals exhibit a three-stage evolution in atmospheric δ(13)C from the Artinskian to the Kungurian. Early Kungurian coals effectively record the presence of the short-lived Kungurian Carbon Isotopic Excursion (KCIE), associated with the proposed rapid release of methane clathrates during deglaciation at the terminus of the Late Palaeozoic Ice Age (LPIA), with no observed disruption to peat-forming and terrestrial plant communities. δ(13)C(org) variations in coals from the Moatize Basin are cyclic in nature on the order of 10(3)–10(5) years and reflect changes in δ(13)C(org) of ~±1‰ during periods of stable peat accumulation, supporting observations from Palaeozoic coals elsewhere. These cyclic variations express palaeoenvironmental factors constraining peat growth and deposition, associated with changes in base level. This study also demonstrates the effectiveness of vitrain in coal as a geochemical tool for recording global atmospheric change during the Late Palaeozoic. |
---|