Cargando…
An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa
Maize production in West and Central Africa (WCA) is constrained by a wide range of interacting stresses that keep productivity below potential yields. Among the many problems afflicting maize production in WCA, drought, foliar diseases, and parasitic weeds are the most critical. Several decades of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851238/ https://www.ncbi.nlm.nih.gov/pubmed/31781144 http://dx.doi.org/10.3389/fpls.2019.01430 |
_version_ | 1783469602566569984 |
---|---|
author | Gedil, Melaku Menkir, Abebe |
author_facet | Gedil, Melaku Menkir, Abebe |
author_sort | Gedil, Melaku |
collection | PubMed |
description | Maize production in West and Central Africa (WCA) is constrained by a wide range of interacting stresses that keep productivity below potential yields. Among the many problems afflicting maize production in WCA, drought, foliar diseases, and parasitic weeds are the most critical. Several decades of efforts devoted to the genetic improvement of maize have resulted in remarkable genetic gain, leading to increased yields of maize on farmers’ fields. The revolution unfolding in the areas of genomics, bioinformatics, and phenomics is generating innovative tools, resources, and technologies for transforming crop breeding programs. It is envisaged that such tools will be integrated within maize breeding programs, thereby advancing these programs and addressing current and future challenges. Accordingly, the maize improvement program within International Institute of Tropical Agriculture (IITA) is undergoing a process of modernization through the introduction of innovative tools and new schemes that are expected to enhance genetic gains and impact on smallholder farmers in the region. Genomic tools enable genetic dissections of complex traits and promote an understanding of the physiological basis of key agronomic and nutritional quality traits. Marker-aided selection and genome-wide selection schemes are being implemented to accelerate genetic gain relating to yield, resilience, and nutritional quality. Therefore, strategies that effectively combine genotypic information with data from field phenotyping and laboratory-based analysis are currently being optimized. Molecular breeding, guided by methodically defined product profiles tailored to different agroecological zones and conditions of climate change, supported by state-of-the-art decision-making tools, is pivotal for the advancement of modern, genomics-aided maize improvement programs. Accelerated genetic gain, in turn, catalyzes a faster variety replacement rate. It is critical to forge and strengthen partnerships for enhancing the impacts of breeding products on farmers’ livelihood. IITA has well-established channels for delivering its research products/technologies to partner organizations for further testing, multiplication, and dissemination across various countries within the subregion. Capacity building of national agricultural research system (NARS) will facilitate the smooth transfer of technologies and best practices from IITA and its partners. |
format | Online Article Text |
id | pubmed-6851238 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68512382019-11-28 An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa Gedil, Melaku Menkir, Abebe Front Plant Sci Plant Science Maize production in West and Central Africa (WCA) is constrained by a wide range of interacting stresses that keep productivity below potential yields. Among the many problems afflicting maize production in WCA, drought, foliar diseases, and parasitic weeds are the most critical. Several decades of efforts devoted to the genetic improvement of maize have resulted in remarkable genetic gain, leading to increased yields of maize on farmers’ fields. The revolution unfolding in the areas of genomics, bioinformatics, and phenomics is generating innovative tools, resources, and technologies for transforming crop breeding programs. It is envisaged that such tools will be integrated within maize breeding programs, thereby advancing these programs and addressing current and future challenges. Accordingly, the maize improvement program within International Institute of Tropical Agriculture (IITA) is undergoing a process of modernization through the introduction of innovative tools and new schemes that are expected to enhance genetic gains and impact on smallholder farmers in the region. Genomic tools enable genetic dissections of complex traits and promote an understanding of the physiological basis of key agronomic and nutritional quality traits. Marker-aided selection and genome-wide selection schemes are being implemented to accelerate genetic gain relating to yield, resilience, and nutritional quality. Therefore, strategies that effectively combine genotypic information with data from field phenotyping and laboratory-based analysis are currently being optimized. Molecular breeding, guided by methodically defined product profiles tailored to different agroecological zones and conditions of climate change, supported by state-of-the-art decision-making tools, is pivotal for the advancement of modern, genomics-aided maize improvement programs. Accelerated genetic gain, in turn, catalyzes a faster variety replacement rate. It is critical to forge and strengthen partnerships for enhancing the impacts of breeding products on farmers’ livelihood. IITA has well-established channels for delivering its research products/technologies to partner organizations for further testing, multiplication, and dissemination across various countries within the subregion. Capacity building of national agricultural research system (NARS) will facilitate the smooth transfer of technologies and best practices from IITA and its partners. Frontiers Media S.A. 2019-11-06 /pmc/articles/PMC6851238/ /pubmed/31781144 http://dx.doi.org/10.3389/fpls.2019.01430 Text en Copyright © 2019 Gedil and Menkir http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Gedil, Melaku Menkir, Abebe An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa |
title | An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa |
title_full | An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa |
title_fullStr | An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa |
title_full_unstemmed | An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa |
title_short | An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa |
title_sort | integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in africa |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851238/ https://www.ncbi.nlm.nih.gov/pubmed/31781144 http://dx.doi.org/10.3389/fpls.2019.01430 |
work_keys_str_mv | AT gedilmelaku anintegratedmolecularandconventionalbreedingschemeforenhancinggeneticgaininmaizeinafrica AT menkirabebe anintegratedmolecularandconventionalbreedingschemeforenhancinggeneticgaininmaizeinafrica AT gedilmelaku integratedmolecularandconventionalbreedingschemeforenhancinggeneticgaininmaizeinafrica AT menkirabebe integratedmolecularandconventionalbreedingschemeforenhancinggeneticgaininmaizeinafrica |