Cargando…
Gold‐Catalyzed Regiospecific Annulation of Unsymmetrically Substituted 1,5‐Diynes for the Precise Synthesis of Bispentalenes
Precise control of the selectivity in organic synthesis is important to access the desired molecules. We demonstrate a regiospecific annulation of unsymmetrically substituted 1,2‐di(arylethynyl)benzene derivatives for a geometry‐controlled synthesis of linear bispentalenes, which is one of the promi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851633/ https://www.ncbi.nlm.nih.gov/pubmed/31310400 http://dx.doi.org/10.1002/chem.201902381 |
Sumario: | Precise control of the selectivity in organic synthesis is important to access the desired molecules. We demonstrate a regiospecific annulation of unsymmetrically substituted 1,2‐di(arylethynyl)benzene derivatives for a geometry‐controlled synthesis of linear bispentalenes, which is one of the promising structures for material science. A gold‐catalyzed annulation of unsymmetrically substituted 1,2‐di(arylethynyl)benzene could produce two isomeric pentalenes, but both electronic and steric effects on the aromatics at the terminal position of the alkyne prove to be crucial for the selectivity; especially a regiospecific annulation was achieved with sterically blocked substituents; namely, 2,4,6‐trimetyl benzene or 2,4‐dimethyl benzene. This approach enables the geometrically controlled synthesis of linear bispentalenes from 1,2,4,5‐tetraethynylbenzene or 2,3,6,7‐tetraethynylnaphthalene. Moreover, the annulation of a series of tetraynes with a different substitution pattern regioselectively provided the bispentalene scaffolds. A computational study revealed that this is the result of a kinetic control induced by the bulky NHC ligands. |
---|