Cargando…

Optimization of the Aflatoxin Monitoring Costs along the Maize Supply Chain

An optimization model was used to gain insight into cost‐effective monitoring plans for aflatoxins along the maize supply chain. The model was based on a typical Dutch maize chain, with maize grown in the Black Sea region, and transported by ship to the Netherlands for use as an ingredient in compou...

Descripción completa

Detalles Bibliográficos
Autores principales: Focker, M., van der Fels‐Klerx, H. J., Oude Lansink, A. G. J. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851699/
https://www.ncbi.nlm.nih.gov/pubmed/31245865
http://dx.doi.org/10.1111/risa.13364
Descripción
Sumario:An optimization model was used to gain insight into cost‐effective monitoring plans for aflatoxins along the maize supply chain. The model was based on a typical Dutch maize chain, with maize grown in the Black Sea region, and transported by ship to the Netherlands for use as an ingredient in compound feed for dairy cattle. Six different scenarios, with different aflatoxin concentrations at harvest and possible aflatoxin production during transport, were used. By minimizing the costs and using parameters such as the concentration, the variance of the sampling plan, and the monitoring and replacement costs, the model optimized the control points (CPs; e.g., after harvest, before or after transport by sea ship), the number of batches sampled at the CP, and the number of samples per batch. This optimization approach led to an end‐of‐chain aflatoxin concentration below the predetermined limit. The model showed that, when postharvest aflatoxin production was not possible, it was most cost‐effective to collect samples from all batches and replace contaminated batches directly after the harvest, since the replacement costs were the lowest at the origin of the chain. When there was aflatoxin production during storage, it was most cost‐effective to collect samples and replace contaminated batches after storage and transport to avoid the duplicate before and after monitoring and replacement costs. Further along the chain a contaminated batch is detected, the more stakeholders are involved, the more expensive the replacement costs and possible recall costs become.