Cargando…

A theory of pulse dynamics and disturbance in ecology

We propose four postulates as the minimum set of logical propositions necessary for a theory of pulse dynamics and disturbance in ecosystems: (1) resource dynamics characterizes the magnitude, rate, and duration of resource change caused by pulse events, including the continuing changes in resources...

Descripción completa

Detalles Bibliográficos
Autores principales: Jentsch, Anke, White, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851700/
https://www.ncbi.nlm.nih.gov/pubmed/31018013
http://dx.doi.org/10.1002/ecy.2734
Descripción
Sumario:We propose four postulates as the minimum set of logical propositions necessary for a theory of pulse dynamics and disturbance in ecosystems: (1) resource dynamics characterizes the magnitude, rate, and duration of resource change caused by pulse events, including the continuing changes in resources that are the result of abiotic and biotic processes; (2) energy flux characterizes the energy flow that controls the variation in the rates of resource assimilation across ecosystems; (3) patch dynamics characterizes the distribution of resource patches over space and time, and the resulting patterns of biotic diversity, ecosystem structure, and cross‐scale feedbacks of pulses processes; and (4) biotic trait diversity characterizes the evolutionary responses to pulse dynamics and, in turn, the way trait diversity affects ecosystem dynamics during and after pulse events. We apply the four postulates to an important class of pulse events, biomass‐altering disturbances, and derive seven generalizations that predict disturbance magnitude, resource trajectory, rate of resource change, disturbance probability, biotic trait diversification at evolutionary scales, biotic diversity at ecological scales, and functional resilience. Ultimately, theory must define the variable combinations that result in dynamic stability, comprising resistance, recovery, and adaptation.