Cargando…

A new vessel segmentation algorithm for robust blood flow quantification from two‐dimensional phase‐contrast magnetic resonance images

Blood flow measurements in the ascending aorta and pulmonary artery from phase‐contrast magnetic resonance images require accurate time‐resolved vessel segmentation over the cardiac cycle. Current semi‐automatic segmentation methods often involve time‐consuming manual correction, relying on user exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Bidhult, Sebastian, Hedström, Erik, Carlsson, Marcus, Töger, Johannes, Steding‐Ehrenborg, Katarina, Arheden, Håkan, Aletras, Anthony H., Heiberg, Einar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852024/
https://www.ncbi.nlm.nih.gov/pubmed/31102479
http://dx.doi.org/10.1111/cpf.12582
_version_ 1783469742503231488
author Bidhult, Sebastian
Hedström, Erik
Carlsson, Marcus
Töger, Johannes
Steding‐Ehrenborg, Katarina
Arheden, Håkan
Aletras, Anthony H.
Heiberg, Einar
author_facet Bidhult, Sebastian
Hedström, Erik
Carlsson, Marcus
Töger, Johannes
Steding‐Ehrenborg, Katarina
Arheden, Håkan
Aletras, Anthony H.
Heiberg, Einar
author_sort Bidhult, Sebastian
collection PubMed
description Blood flow measurements in the ascending aorta and pulmonary artery from phase‐contrast magnetic resonance images require accurate time‐resolved vessel segmentation over the cardiac cycle. Current semi‐automatic segmentation methods often involve time‐consuming manual correction, relying on user experience for accurate results. The purpose of this study was to develop a semi‐automatic vessel segmentation algorithm with shape constraints based on manual vessel delineations for robust segmentation of the ascending aorta and pulmonary artery, to evaluate the proposed method in healthy volunteers and patients with heart failure and congenital heart disease, to validate the method in a pulsatile flow phantom experiment, and to make the method freely available for research purposes. Algorithm shape constraints were extracted from manual reference delineations of the ascending aorta (n = 20) and pulmonary artery (n = 20) and were included in a semi‐automatic segmentation method only requiring manual delineation in one image. Bias and variability (bias ± SD) for flow volume of the proposed algorithm versus manual reference delineations were 0·0 ± 1·9 ml in the ascending aorta (n = 151; seven healthy volunteers; 144 heart failure patients) and −1·7 ± 2·9 ml in the pulmonary artery (n = 40; 25 healthy volunteers; 15 patients with atrial septal defect). Interobserver bias and variability were lower (P = 0·008) for the proposed semi‐automatic method (−0·1 ± 0·9 ml) compared to manual reference delineations (1·5 ± 5·1 ml). Phantom validation showed good agreement between the proposed method and timer‐and‐beaker flow volumes (0·4 ± 2·7 ml). In conclusion, the proposed semi‐automatic vessel segmentation algorithm can be used for efficient analysis of flow and shunt volumes in the aorta and pulmonary artery.
format Online
Article
Text
id pubmed-6852024
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-68520242019-11-18 A new vessel segmentation algorithm for robust blood flow quantification from two‐dimensional phase‐contrast magnetic resonance images Bidhult, Sebastian Hedström, Erik Carlsson, Marcus Töger, Johannes Steding‐Ehrenborg, Katarina Arheden, Håkan Aletras, Anthony H. Heiberg, Einar Clin Physiol Funct Imaging Original Articles Blood flow measurements in the ascending aorta and pulmonary artery from phase‐contrast magnetic resonance images require accurate time‐resolved vessel segmentation over the cardiac cycle. Current semi‐automatic segmentation methods often involve time‐consuming manual correction, relying on user experience for accurate results. The purpose of this study was to develop a semi‐automatic vessel segmentation algorithm with shape constraints based on manual vessel delineations for robust segmentation of the ascending aorta and pulmonary artery, to evaluate the proposed method in healthy volunteers and patients with heart failure and congenital heart disease, to validate the method in a pulsatile flow phantom experiment, and to make the method freely available for research purposes. Algorithm shape constraints were extracted from manual reference delineations of the ascending aorta (n = 20) and pulmonary artery (n = 20) and were included in a semi‐automatic segmentation method only requiring manual delineation in one image. Bias and variability (bias ± SD) for flow volume of the proposed algorithm versus manual reference delineations were 0·0 ± 1·9 ml in the ascending aorta (n = 151; seven healthy volunteers; 144 heart failure patients) and −1·7 ± 2·9 ml in the pulmonary artery (n = 40; 25 healthy volunteers; 15 patients with atrial septal defect). Interobserver bias and variability were lower (P = 0·008) for the proposed semi‐automatic method (−0·1 ± 0·9 ml) compared to manual reference delineations (1·5 ± 5·1 ml). Phantom validation showed good agreement between the proposed method and timer‐and‐beaker flow volumes (0·4 ± 2·7 ml). In conclusion, the proposed semi‐automatic vessel segmentation algorithm can be used for efficient analysis of flow and shunt volumes in the aorta and pulmonary artery. John Wiley and Sons Inc. 2019-06-06 2019-09 /pmc/articles/PMC6852024/ /pubmed/31102479 http://dx.doi.org/10.1111/cpf.12582 Text en © 2019 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd on behalf of Scandinavian Society of Clinical Physiology and Nuclear Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Bidhult, Sebastian
Hedström, Erik
Carlsson, Marcus
Töger, Johannes
Steding‐Ehrenborg, Katarina
Arheden, Håkan
Aletras, Anthony H.
Heiberg, Einar
A new vessel segmentation algorithm for robust blood flow quantification from two‐dimensional phase‐contrast magnetic resonance images
title A new vessel segmentation algorithm for robust blood flow quantification from two‐dimensional phase‐contrast magnetic resonance images
title_full A new vessel segmentation algorithm for robust blood flow quantification from two‐dimensional phase‐contrast magnetic resonance images
title_fullStr A new vessel segmentation algorithm for robust blood flow quantification from two‐dimensional phase‐contrast magnetic resonance images
title_full_unstemmed A new vessel segmentation algorithm for robust blood flow quantification from two‐dimensional phase‐contrast magnetic resonance images
title_short A new vessel segmentation algorithm for robust blood flow quantification from two‐dimensional phase‐contrast magnetic resonance images
title_sort new vessel segmentation algorithm for robust blood flow quantification from two‐dimensional phase‐contrast magnetic resonance images
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852024/
https://www.ncbi.nlm.nih.gov/pubmed/31102479
http://dx.doi.org/10.1111/cpf.12582
work_keys_str_mv AT bidhultsebastian anewvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT hedstromerik anewvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT carlssonmarcus anewvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT togerjohannes anewvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT stedingehrenborgkatarina anewvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT arhedenhakan anewvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT aletrasanthonyh anewvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT heibergeinar anewvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT bidhultsebastian newvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT hedstromerik newvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT carlssonmarcus newvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT togerjohannes newvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT stedingehrenborgkatarina newvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT arhedenhakan newvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT aletrasanthonyh newvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages
AT heibergeinar newvesselsegmentationalgorithmforrobustbloodflowquantificationfromtwodimensionalphasecontrastmagneticresonanceimages