Cargando…

An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents

PURPOSE: (19)F‐MRI is gaining widespread interest for cell tracking and quantification of immune and inflammatory cells in vivo. Different fluorinated compounds can be discriminated based on their characteristic MR spectra, allowing in vivo imaging of multiple (19)F compounds simultaneously, so‐call...

Descripción completa

Detalles Bibliográficos
Autores principales: Schoormans, Jasper, Calcagno, Claudia, Daal, Mariah R.R., Wüst, Rob C.I., Faries, Christopher, Maier, Alexander, Teunissen, Abraham J.P., Naidu, Sonum, Sanchez‐Gaytan, Brenda L., Nederveen, Aart J., Fayad, Zahi A., Mulder, Willem J.M., Coolen, Bram F., Strijkers, Gustav J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852267/
https://www.ncbi.nlm.nih.gov/pubmed/31441541
http://dx.doi.org/10.1002/mrm.27926
_version_ 1783469792991117312
author Schoormans, Jasper
Calcagno, Claudia
Daal, Mariah R.R.
Wüst, Rob C.I.
Faries, Christopher
Maier, Alexander
Teunissen, Abraham J.P.
Naidu, Sonum
Sanchez‐Gaytan, Brenda L.
Nederveen, Aart J.
Fayad, Zahi A.
Mulder, Willem J.M.
Coolen, Bram F.
Strijkers, Gustav J.
author_facet Schoormans, Jasper
Calcagno, Claudia
Daal, Mariah R.R.
Wüst, Rob C.I.
Faries, Christopher
Maier, Alexander
Teunissen, Abraham J.P.
Naidu, Sonum
Sanchez‐Gaytan, Brenda L.
Nederveen, Aart J.
Fayad, Zahi A.
Mulder, Willem J.M.
Coolen, Bram F.
Strijkers, Gustav J.
author_sort Schoormans, Jasper
collection PubMed
description PURPOSE: (19)F‐MRI is gaining widespread interest for cell tracking and quantification of immune and inflammatory cells in vivo. Different fluorinated compounds can be discriminated based on their characteristic MR spectra, allowing in vivo imaging of multiple (19)F compounds simultaneously, so‐called multicolor (19)F‐MRI. We introduce a method for multicolor (19)F‐MRI using an iterative sparse deconvolution method to separate different (19)F compounds and remove chemical shift artifacts arising from multiple resonances. METHODS: The method employs cycling of the readout gradient direction to alternate the spatial orientation of the off‐resonance chemical shift artifacts, which are subsequently removed by iterative sparse deconvolution. Noise robustness and separation was investigated by numerical simulations. Mixtures of fluorinated oils (PFCE and PFOB) were measured on a 7T MR scanner to identify the relation between (19)F signal intensity and compound concentration. The method was validated in a mouse model after intramuscular injection of fluorine probes, as well as after intravascular injection. RESULTS: Numerical simulations show efficient separation of (19)F compounds, even at low signal‐to‐noise ratio. Reliable chemical shift artifact removal and separation of PFCE and PFOB signals was achieved in phantoms and in vivo. Signal intensities correlated excellently to the relative (19)F compound concentrations (r(−2) = 0.966/0.990 for PFOB/PFCE). CONCLUSIONS: The method requires minimal sequence adaptation and is therefore easily implemented on different MRI systems. Simulations, phantom experiments, and in‐vivo measurements in mice showed effective separation and removal of chemical shift artifacts below noise level. We foresee applicability for simultaneous in‐vivo imaging of (19)F‐containing fluorine probes or for detection of (19)F‐labeled cell populations.
format Online
Article
Text
id pubmed-6852267
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-68522672019-11-22 An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents Schoormans, Jasper Calcagno, Claudia Daal, Mariah R.R. Wüst, Rob C.I. Faries, Christopher Maier, Alexander Teunissen, Abraham J.P. Naidu, Sonum Sanchez‐Gaytan, Brenda L. Nederveen, Aart J. Fayad, Zahi A. Mulder, Willem J.M. Coolen, Bram F. Strijkers, Gustav J. Magn Reson Med Full Papers—Preclinical and Clinical Imaging PURPOSE: (19)F‐MRI is gaining widespread interest for cell tracking and quantification of immune and inflammatory cells in vivo. Different fluorinated compounds can be discriminated based on their characteristic MR spectra, allowing in vivo imaging of multiple (19)F compounds simultaneously, so‐called multicolor (19)F‐MRI. We introduce a method for multicolor (19)F‐MRI using an iterative sparse deconvolution method to separate different (19)F compounds and remove chemical shift artifacts arising from multiple resonances. METHODS: The method employs cycling of the readout gradient direction to alternate the spatial orientation of the off‐resonance chemical shift artifacts, which are subsequently removed by iterative sparse deconvolution. Noise robustness and separation was investigated by numerical simulations. Mixtures of fluorinated oils (PFCE and PFOB) were measured on a 7T MR scanner to identify the relation between (19)F signal intensity and compound concentration. The method was validated in a mouse model after intramuscular injection of fluorine probes, as well as after intravascular injection. RESULTS: Numerical simulations show efficient separation of (19)F compounds, even at low signal‐to‐noise ratio. Reliable chemical shift artifact removal and separation of PFCE and PFOB signals was achieved in phantoms and in vivo. Signal intensities correlated excellently to the relative (19)F compound concentrations (r(−2) = 0.966/0.990 for PFOB/PFCE). CONCLUSIONS: The method requires minimal sequence adaptation and is therefore easily implemented on different MRI systems. Simulations, phantom experiments, and in‐vivo measurements in mice showed effective separation and removal of chemical shift artifacts below noise level. We foresee applicability for simultaneous in‐vivo imaging of (19)F‐containing fluorine probes or for detection of (19)F‐labeled cell populations. John Wiley and Sons Inc. 2019-08-23 2020-01 /pmc/articles/PMC6852267/ /pubmed/31441541 http://dx.doi.org/10.1002/mrm.27926 Text en © 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Full Papers—Preclinical and Clinical Imaging
Schoormans, Jasper
Calcagno, Claudia
Daal, Mariah R.R.
Wüst, Rob C.I.
Faries, Christopher
Maier, Alexander
Teunissen, Abraham J.P.
Naidu, Sonum
Sanchez‐Gaytan, Brenda L.
Nederveen, Aart J.
Fayad, Zahi A.
Mulder, Willem J.M.
Coolen, Bram F.
Strijkers, Gustav J.
An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents
title An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents
title_full An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents
title_fullStr An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents
title_full_unstemmed An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents
title_short An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents
title_sort iterative sparse deconvolution method for simultaneous multicolor (19)f‐mri of multiple contrast agents
topic Full Papers—Preclinical and Clinical Imaging
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852267/
https://www.ncbi.nlm.nih.gov/pubmed/31441541
http://dx.doi.org/10.1002/mrm.27926
work_keys_str_mv AT schoormansjasper aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT calcagnoclaudia aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT daalmariahrr aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT wustrobci aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT farieschristopher aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT maieralexander aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT teunissenabrahamjp aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT naidusonum aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT sanchezgaytanbrendal aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT nederveenaartj aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT fayadzahia aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT mulderwillemjm aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT coolenbramf aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT strijkersgustavj aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT schoormansjasper iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT calcagnoclaudia iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT daalmariahrr iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT wustrobci iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT farieschristopher iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT maieralexander iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT teunissenabrahamjp iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT naidusonum iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT sanchezgaytanbrendal iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT nederveenaartj iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT fayadzahia iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT mulderwillemjm iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT coolenbramf iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents
AT strijkersgustavj iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents