Cargando…
An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents
PURPOSE: (19)F‐MRI is gaining widespread interest for cell tracking and quantification of immune and inflammatory cells in vivo. Different fluorinated compounds can be discriminated based on their characteristic MR spectra, allowing in vivo imaging of multiple (19)F compounds simultaneously, so‐call...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852267/ https://www.ncbi.nlm.nih.gov/pubmed/31441541 http://dx.doi.org/10.1002/mrm.27926 |
_version_ | 1783469792991117312 |
---|---|
author | Schoormans, Jasper Calcagno, Claudia Daal, Mariah R.R. Wüst, Rob C.I. Faries, Christopher Maier, Alexander Teunissen, Abraham J.P. Naidu, Sonum Sanchez‐Gaytan, Brenda L. Nederveen, Aart J. Fayad, Zahi A. Mulder, Willem J.M. Coolen, Bram F. Strijkers, Gustav J. |
author_facet | Schoormans, Jasper Calcagno, Claudia Daal, Mariah R.R. Wüst, Rob C.I. Faries, Christopher Maier, Alexander Teunissen, Abraham J.P. Naidu, Sonum Sanchez‐Gaytan, Brenda L. Nederveen, Aart J. Fayad, Zahi A. Mulder, Willem J.M. Coolen, Bram F. Strijkers, Gustav J. |
author_sort | Schoormans, Jasper |
collection | PubMed |
description | PURPOSE: (19)F‐MRI is gaining widespread interest for cell tracking and quantification of immune and inflammatory cells in vivo. Different fluorinated compounds can be discriminated based on their characteristic MR spectra, allowing in vivo imaging of multiple (19)F compounds simultaneously, so‐called multicolor (19)F‐MRI. We introduce a method for multicolor (19)F‐MRI using an iterative sparse deconvolution method to separate different (19)F compounds and remove chemical shift artifacts arising from multiple resonances. METHODS: The method employs cycling of the readout gradient direction to alternate the spatial orientation of the off‐resonance chemical shift artifacts, which are subsequently removed by iterative sparse deconvolution. Noise robustness and separation was investigated by numerical simulations. Mixtures of fluorinated oils (PFCE and PFOB) were measured on a 7T MR scanner to identify the relation between (19)F signal intensity and compound concentration. The method was validated in a mouse model after intramuscular injection of fluorine probes, as well as after intravascular injection. RESULTS: Numerical simulations show efficient separation of (19)F compounds, even at low signal‐to‐noise ratio. Reliable chemical shift artifact removal and separation of PFCE and PFOB signals was achieved in phantoms and in vivo. Signal intensities correlated excellently to the relative (19)F compound concentrations (r(−2) = 0.966/0.990 for PFOB/PFCE). CONCLUSIONS: The method requires minimal sequence adaptation and is therefore easily implemented on different MRI systems. Simulations, phantom experiments, and in‐vivo measurements in mice showed effective separation and removal of chemical shift artifacts below noise level. We foresee applicability for simultaneous in‐vivo imaging of (19)F‐containing fluorine probes or for detection of (19)F‐labeled cell populations. |
format | Online Article Text |
id | pubmed-6852267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68522672019-11-22 An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents Schoormans, Jasper Calcagno, Claudia Daal, Mariah R.R. Wüst, Rob C.I. Faries, Christopher Maier, Alexander Teunissen, Abraham J.P. Naidu, Sonum Sanchez‐Gaytan, Brenda L. Nederveen, Aart J. Fayad, Zahi A. Mulder, Willem J.M. Coolen, Bram F. Strijkers, Gustav J. Magn Reson Med Full Papers—Preclinical and Clinical Imaging PURPOSE: (19)F‐MRI is gaining widespread interest for cell tracking and quantification of immune and inflammatory cells in vivo. Different fluorinated compounds can be discriminated based on their characteristic MR spectra, allowing in vivo imaging of multiple (19)F compounds simultaneously, so‐called multicolor (19)F‐MRI. We introduce a method for multicolor (19)F‐MRI using an iterative sparse deconvolution method to separate different (19)F compounds and remove chemical shift artifacts arising from multiple resonances. METHODS: The method employs cycling of the readout gradient direction to alternate the spatial orientation of the off‐resonance chemical shift artifacts, which are subsequently removed by iterative sparse deconvolution. Noise robustness and separation was investigated by numerical simulations. Mixtures of fluorinated oils (PFCE and PFOB) were measured on a 7T MR scanner to identify the relation between (19)F signal intensity and compound concentration. The method was validated in a mouse model after intramuscular injection of fluorine probes, as well as after intravascular injection. RESULTS: Numerical simulations show efficient separation of (19)F compounds, even at low signal‐to‐noise ratio. Reliable chemical shift artifact removal and separation of PFCE and PFOB signals was achieved in phantoms and in vivo. Signal intensities correlated excellently to the relative (19)F compound concentrations (r(−2) = 0.966/0.990 for PFOB/PFCE). CONCLUSIONS: The method requires minimal sequence adaptation and is therefore easily implemented on different MRI systems. Simulations, phantom experiments, and in‐vivo measurements in mice showed effective separation and removal of chemical shift artifacts below noise level. We foresee applicability for simultaneous in‐vivo imaging of (19)F‐containing fluorine probes or for detection of (19)F‐labeled cell populations. John Wiley and Sons Inc. 2019-08-23 2020-01 /pmc/articles/PMC6852267/ /pubmed/31441541 http://dx.doi.org/10.1002/mrm.27926 Text en © 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Full Papers—Preclinical and Clinical Imaging Schoormans, Jasper Calcagno, Claudia Daal, Mariah R.R. Wüst, Rob C.I. Faries, Christopher Maier, Alexander Teunissen, Abraham J.P. Naidu, Sonum Sanchez‐Gaytan, Brenda L. Nederveen, Aart J. Fayad, Zahi A. Mulder, Willem J.M. Coolen, Bram F. Strijkers, Gustav J. An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents |
title | An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents |
title_full | An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents |
title_fullStr | An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents |
title_full_unstemmed | An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents |
title_short | An iterative sparse deconvolution method for simultaneous multicolor (19)F‐MRI of multiple contrast agents |
title_sort | iterative sparse deconvolution method for simultaneous multicolor (19)f‐mri of multiple contrast agents |
topic | Full Papers—Preclinical and Clinical Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852267/ https://www.ncbi.nlm.nih.gov/pubmed/31441541 http://dx.doi.org/10.1002/mrm.27926 |
work_keys_str_mv | AT schoormansjasper aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT calcagnoclaudia aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT daalmariahrr aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT wustrobci aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT farieschristopher aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT maieralexander aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT teunissenabrahamjp aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT naidusonum aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT sanchezgaytanbrendal aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT nederveenaartj aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT fayadzahia aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT mulderwillemjm aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT coolenbramf aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT strijkersgustavj aniterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT schoormansjasper iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT calcagnoclaudia iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT daalmariahrr iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT wustrobci iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT farieschristopher iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT maieralexander iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT teunissenabrahamjp iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT naidusonum iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT sanchezgaytanbrendal iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT nederveenaartj iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT fayadzahia iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT mulderwillemjm iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT coolenbramf iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents AT strijkersgustavj iterativesparsedeconvolutionmethodforsimultaneousmulticolor19fmriofmultiplecontrastagents |