Cargando…
No Effect of Interstimulus Interval on Acoustic Reflex Thresholds
The acoustic reflex (AR), a longstanding component of the audiological test battery, has received renewed attention in the context of noise-induced cochlear synaptopathy—the destruction of synapses between inner hair cells and auditory nerve fibers. Noninvasive proxy measures of synaptopathy are wid...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852360/ https://www.ncbi.nlm.nih.gov/pubmed/31516095 http://dx.doi.org/10.1177/2331216519874165 |
_version_ | 1783469816309350400 |
---|---|
author | Guest, Hannah Munro, Kevin J. Couth, Samuel Millman, Rebecca E. Prendergast, Garreth Kluk, Karolina Murray, Carlyn Plack, Chris |
author_facet | Guest, Hannah Munro, Kevin J. Couth, Samuel Millman, Rebecca E. Prendergast, Garreth Kluk, Karolina Murray, Carlyn Plack, Chris |
author_sort | Guest, Hannah |
collection | PubMed |
description | The acoustic reflex (AR), a longstanding component of the audiological test battery, has received renewed attention in the context of noise-induced cochlear synaptopathy—the destruction of synapses between inner hair cells and auditory nerve fibers. Noninvasive proxy measures of synaptopathy are widely sought, and AR thresholds (ARTs) correlate closely with synaptic survival in rodents. However, measurement in humans at high stimulus frequencies—likely important when testing for noise-induced pathology—can be challenging; reflexes at 4 kHz are frequently absent or occur only at high stimulus levels, even in young people with clinically normal audiograms. This phenomenon may partly reflect differences across stimulus frequency in the temporal characteristics of the response; later onset of the response, earlier onset of adaptation, and higher rate of adaptation have been observed at 4 kHz than at 1 kHz. One temporal aspect of the response that has received little attention is the interstimulus interval (ISI); inadequate duration of ISI might lead to incomplete recovery of the response between successive presentations and consequent response fatigue. This research aimed to test for effects of ISI on ARTs in normally hearing young humans, measured at 1 and 4 kHz. Contrary to our hypotheses, increasing ISIs from 2.5 to 8.5 s did not reduce ART level, nor raise ART reliability. Results confirm that clinically measured ARTs—including those at 4 kHz—can exhibit excellent reliability and that relatively short (2.5 s) ISIs are adequate for the measurement of sensitive and reliable ARTs. |
format | Online Article Text |
id | pubmed-6852360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-68523602019-11-22 No Effect of Interstimulus Interval on Acoustic Reflex Thresholds Guest, Hannah Munro, Kevin J. Couth, Samuel Millman, Rebecca E. Prendergast, Garreth Kluk, Karolina Murray, Carlyn Plack, Chris Trends Hear ManCAD100: Original Article The acoustic reflex (AR), a longstanding component of the audiological test battery, has received renewed attention in the context of noise-induced cochlear synaptopathy—the destruction of synapses between inner hair cells and auditory nerve fibers. Noninvasive proxy measures of synaptopathy are widely sought, and AR thresholds (ARTs) correlate closely with synaptic survival in rodents. However, measurement in humans at high stimulus frequencies—likely important when testing for noise-induced pathology—can be challenging; reflexes at 4 kHz are frequently absent or occur only at high stimulus levels, even in young people with clinically normal audiograms. This phenomenon may partly reflect differences across stimulus frequency in the temporal characteristics of the response; later onset of the response, earlier onset of adaptation, and higher rate of adaptation have been observed at 4 kHz than at 1 kHz. One temporal aspect of the response that has received little attention is the interstimulus interval (ISI); inadequate duration of ISI might lead to incomplete recovery of the response between successive presentations and consequent response fatigue. This research aimed to test for effects of ISI on ARTs in normally hearing young humans, measured at 1 and 4 kHz. Contrary to our hypotheses, increasing ISIs from 2.5 to 8.5 s did not reduce ART level, nor raise ART reliability. Results confirm that clinically measured ARTs—including those at 4 kHz—can exhibit excellent reliability and that relatively short (2.5 s) ISIs are adequate for the measurement of sensitive and reliable ARTs. SAGE Publications 2019-09-13 /pmc/articles/PMC6852360/ /pubmed/31516095 http://dx.doi.org/10.1177/2331216519874165 Text en © The Author(s) 2019 http://creativecommons.org/licenses/by/4.0/ Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | ManCAD100: Original Article Guest, Hannah Munro, Kevin J. Couth, Samuel Millman, Rebecca E. Prendergast, Garreth Kluk, Karolina Murray, Carlyn Plack, Chris No Effect of Interstimulus Interval on Acoustic Reflex Thresholds |
title | No Effect of Interstimulus Interval on Acoustic Reflex Thresholds |
title_full | No Effect of Interstimulus Interval on Acoustic Reflex Thresholds |
title_fullStr | No Effect of Interstimulus Interval on Acoustic Reflex Thresholds |
title_full_unstemmed | No Effect of Interstimulus Interval on Acoustic Reflex Thresholds |
title_short | No Effect of Interstimulus Interval on Acoustic Reflex Thresholds |
title_sort | no effect of interstimulus interval on acoustic reflex thresholds |
topic | ManCAD100: Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852360/ https://www.ncbi.nlm.nih.gov/pubmed/31516095 http://dx.doi.org/10.1177/2331216519874165 |
work_keys_str_mv | AT guesthannah noeffectofinterstimulusintervalonacousticreflexthresholds AT munrokevinj noeffectofinterstimulusintervalonacousticreflexthresholds AT couthsamuel noeffectofinterstimulusintervalonacousticreflexthresholds AT millmanrebeccae noeffectofinterstimulusintervalonacousticreflexthresholds AT prendergastgarreth noeffectofinterstimulusintervalonacousticreflexthresholds AT klukkarolina noeffectofinterstimulusintervalonacousticreflexthresholds AT murraycarlyn noeffectofinterstimulusintervalonacousticreflexthresholds AT plackchris noeffectofinterstimulusintervalonacousticreflexthresholds |