Cargando…
The genome of cowpea (Vigna unguiculata [L.] Walp.)
Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub‐Saharan Africa, that is resilient to hot and drought‐prone environments. An assembly of the single‐haplotype inbred genome of cowpea IT97K‐499‐35 was developed by exploiting the syner...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852540/ https://www.ncbi.nlm.nih.gov/pubmed/31017340 http://dx.doi.org/10.1111/tpj.14349 |
_version_ | 1783469861306892288 |
---|---|
author | Lonardi, Stefano Muñoz‐Amatriaín, María Liang, Qihua Shu, Shengqiang Wanamaker, Steve I. Lo, Sassoum Tanskanen, Jaakko Schulman, Alan H. Zhu, Tingting Luo, Ming‐Cheng Alhakami, Hind Ounit, Rachid Hasan, Abid Md. Verdier, Jerome Roberts, Philip A. Santos, Jansen R.P. Ndeve, Arsenio Doležel, Jaroslav Vrána, Jan Hokin, Samuel A. Farmer, Andrew D. Cannon, Steven B. Close, Timothy J. |
author_facet | Lonardi, Stefano Muñoz‐Amatriaín, María Liang, Qihua Shu, Shengqiang Wanamaker, Steve I. Lo, Sassoum Tanskanen, Jaakko Schulman, Alan H. Zhu, Tingting Luo, Ming‐Cheng Alhakami, Hind Ounit, Rachid Hasan, Abid Md. Verdier, Jerome Roberts, Philip A. Santos, Jansen R.P. Ndeve, Arsenio Doležel, Jaroslav Vrána, Jan Hokin, Samuel A. Farmer, Andrew D. Cannon, Steven B. Close, Timothy J. |
author_sort | Lonardi, Stefano |
collection | PubMed |
description | Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub‐Saharan Africa, that is resilient to hot and drought‐prone environments. An assembly of the single‐haplotype inbred genome of cowpea IT97K‐499‐35 was developed by exploiting the synergies between single‐molecule real‐time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination‐poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high‐recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS‐LRR and the SAUR‐like auxin superfamilies compared with other warm‐season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented. |
format | Online Article Text |
id | pubmed-6852540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68525402019-11-20 The genome of cowpea (Vigna unguiculata [L.] Walp.) Lonardi, Stefano Muñoz‐Amatriaín, María Liang, Qihua Shu, Shengqiang Wanamaker, Steve I. Lo, Sassoum Tanskanen, Jaakko Schulman, Alan H. Zhu, Tingting Luo, Ming‐Cheng Alhakami, Hind Ounit, Rachid Hasan, Abid Md. Verdier, Jerome Roberts, Philip A. Santos, Jansen R.P. Ndeve, Arsenio Doležel, Jaroslav Vrána, Jan Hokin, Samuel A. Farmer, Andrew D. Cannon, Steven B. Close, Timothy J. Plant J Resource Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub‐Saharan Africa, that is resilient to hot and drought‐prone environments. An assembly of the single‐haplotype inbred genome of cowpea IT97K‐499‐35 was developed by exploiting the synergies between single‐molecule real‐time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination‐poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high‐recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS‐LRR and the SAUR‐like auxin superfamilies compared with other warm‐season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented. John Wiley and Sons Inc. 2019-05-28 2019-06 /pmc/articles/PMC6852540/ /pubmed/31017340 http://dx.doi.org/10.1111/tpj.14349 Text en © 2019 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Resource Lonardi, Stefano Muñoz‐Amatriaín, María Liang, Qihua Shu, Shengqiang Wanamaker, Steve I. Lo, Sassoum Tanskanen, Jaakko Schulman, Alan H. Zhu, Tingting Luo, Ming‐Cheng Alhakami, Hind Ounit, Rachid Hasan, Abid Md. Verdier, Jerome Roberts, Philip A. Santos, Jansen R.P. Ndeve, Arsenio Doležel, Jaroslav Vrána, Jan Hokin, Samuel A. Farmer, Andrew D. Cannon, Steven B. Close, Timothy J. The genome of cowpea (Vigna unguiculata [L.] Walp.) |
title | The genome of cowpea (Vigna unguiculata [L.] Walp.) |
title_full | The genome of cowpea (Vigna unguiculata [L.] Walp.) |
title_fullStr | The genome of cowpea (Vigna unguiculata [L.] Walp.) |
title_full_unstemmed | The genome of cowpea (Vigna unguiculata [L.] Walp.) |
title_short | The genome of cowpea (Vigna unguiculata [L.] Walp.) |
title_sort | genome of cowpea (vigna unguiculata [l.] walp.) |
topic | Resource |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852540/ https://www.ncbi.nlm.nih.gov/pubmed/31017340 http://dx.doi.org/10.1111/tpj.14349 |
work_keys_str_mv | AT lonardistefano thegenomeofcowpeavignaunguiculatalwalp AT munozamatriainmaria thegenomeofcowpeavignaunguiculatalwalp AT liangqihua thegenomeofcowpeavignaunguiculatalwalp AT shushengqiang thegenomeofcowpeavignaunguiculatalwalp AT wanamakerstevei thegenomeofcowpeavignaunguiculatalwalp AT losassoum thegenomeofcowpeavignaunguiculatalwalp AT tanskanenjaakko thegenomeofcowpeavignaunguiculatalwalp AT schulmanalanh thegenomeofcowpeavignaunguiculatalwalp AT zhutingting thegenomeofcowpeavignaunguiculatalwalp AT luomingcheng thegenomeofcowpeavignaunguiculatalwalp AT alhakamihind thegenomeofcowpeavignaunguiculatalwalp AT ounitrachid thegenomeofcowpeavignaunguiculatalwalp AT hasanabidmd thegenomeofcowpeavignaunguiculatalwalp AT verdierjerome thegenomeofcowpeavignaunguiculatalwalp AT robertsphilipa thegenomeofcowpeavignaunguiculatalwalp AT santosjansenrp thegenomeofcowpeavignaunguiculatalwalp AT ndevearsenio thegenomeofcowpeavignaunguiculatalwalp AT dolezeljaroslav thegenomeofcowpeavignaunguiculatalwalp AT vranajan thegenomeofcowpeavignaunguiculatalwalp AT hokinsamuela thegenomeofcowpeavignaunguiculatalwalp AT farmerandrewd thegenomeofcowpeavignaunguiculatalwalp AT cannonstevenb thegenomeofcowpeavignaunguiculatalwalp AT closetimothyj thegenomeofcowpeavignaunguiculatalwalp AT lonardistefano genomeofcowpeavignaunguiculatalwalp AT munozamatriainmaria genomeofcowpeavignaunguiculatalwalp AT liangqihua genomeofcowpeavignaunguiculatalwalp AT shushengqiang genomeofcowpeavignaunguiculatalwalp AT wanamakerstevei genomeofcowpeavignaunguiculatalwalp AT losassoum genomeofcowpeavignaunguiculatalwalp AT tanskanenjaakko genomeofcowpeavignaunguiculatalwalp AT schulmanalanh genomeofcowpeavignaunguiculatalwalp AT zhutingting genomeofcowpeavignaunguiculatalwalp AT luomingcheng genomeofcowpeavignaunguiculatalwalp AT alhakamihind genomeofcowpeavignaunguiculatalwalp AT ounitrachid genomeofcowpeavignaunguiculatalwalp AT hasanabidmd genomeofcowpeavignaunguiculatalwalp AT verdierjerome genomeofcowpeavignaunguiculatalwalp AT robertsphilipa genomeofcowpeavignaunguiculatalwalp AT santosjansenrp genomeofcowpeavignaunguiculatalwalp AT ndevearsenio genomeofcowpeavignaunguiculatalwalp AT dolezeljaroslav genomeofcowpeavignaunguiculatalwalp AT vranajan genomeofcowpeavignaunguiculatalwalp AT hokinsamuela genomeofcowpeavignaunguiculatalwalp AT farmerandrewd genomeofcowpeavignaunguiculatalwalp AT cannonstevenb genomeofcowpeavignaunguiculatalwalp AT closetimothyj genomeofcowpeavignaunguiculatalwalp |